精英家教网 > 高中数学 > 题目详情
9.已知$f(x)=\left\{\begin{array}{l}{|lg|x||\\;x≠0}\\{0\\;x=0}\end{array}\right.$,关于x的方程f2(x)+bf(x)+c=0有7个不同的解,则满足b,c的条件是(  )
A.b<0,c<0B.b<0,c=0C.b>0,c=0D.b>0,c<0

分析 作出是f(x)的图象,利用换元法结合一元二次方程根的取值和分布关系进行求解即可.

解答 解:作出函数f(x)的图象如图,
设f(x)=t,当t=0时,方程有3个根;
当t>0时,方程有4个根,
当t<0时,方程无解
∴要使关于x的方程f2(x)+bf(x)+c=0有7个不同实数解,关于f(x)的方程f2(x)+bf(x)+c=0
等价为t2+bt+c=0有一个正实数根和一个等于零的根.
∴c=0,
此时t2+bt=t(t+b)=0,
则另外一个根为t=-b,
即f(x)=-b>0,
即b<0,c=0.
故选:B.

点评 本题主要考查函数零点个数的判断,利用换元法将方程转化为一元二次方程,利用数形结合是解决此类问题的基本方法.综合性较强,难度较大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.写出一个系数矩阵为单位矩阵,解为1行4列矩阵(1 2 3 4)的线性方程组.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设m,n,l为空间不重合的直线,α,β,γ是空间不重合的平面,则下列说法准确的个数是(  )
①m∥l,n∥l,则m∥n;②m⊥l,n⊥l,则m∥n;③若m∥l,m∥α,则l∥α; ④若l∥m,l?α,m?β,则α∥β;⑤若m?α,m∥β,l?β,l∥α,则α∥β⑥α∥γ,β∥γ,则α∥β.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在棱长为$\sqrt{6}$的正方体ABCD-A1B1C1D1中,D1到B1C的距离为(  )
A.$\sqrt{6}$B.2$\sqrt{3}$C.3$\sqrt{2}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.下列说法中:
①两条直线都和同一个平面平行,则这两条直线平行;
②在平行投影下,与投影面平行的平面图形留下的影子,与这个平面图形的形状和大小完全相同;
③一个圆绕其任意一条直径旋转180°所形成的旋转体叫做球;
④a∥b,b?α⇒a∥α;
⑤已知三条两两异面的直线,则存在无穷多条直线与它们都相交.
则正确的序号是②⑤.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某中学高二年级举行数学竞赛,共有800名学生参加.为了了解本次竞赛成绩,从中抽取了部分学生的成绩(得分均为整数,满分100分)进行统计.请你根据频率分布表,解答下列问题:
(1)填充下列频率分布表中的空格;
(2)估计众数、中位数和平均数;
(3)规定成绩不低于85分的同学能获奖,请估计在参加的800名学生中大概有多少名学生获奖?
 分组(分数)频数频率
[60,70)0.12
[70,80)20
[80,90)0.24
[90,100]12
 合计501

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.有一个三棱锥与一个四棱锥,棱长都相等,它们的一个侧面重叠后,还有暴露面的个数为(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.函数f(x)是定义在R上的偶函数,且F(x)=f(x)+x,若F(2)=3,则F(-2)=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知p:lg(x-3)<0,q:$\frac{x-2}{x-4}$<0,那么p是q的(  )条件.
A.充分不必要B.充要
C.必要不充分D.既不充分也不必要

查看答案和解析>>

同步练习册答案