精英家教网 > 高中数学 > 题目详情
已知f(x)是R上的奇函数,当x>0时,f(x)=(1-x)x,则当x<0时,f(x)=
x(1+x)
x(1+x)
分析:根据x>0时函数的表达式,可得x<0时f(-x)=-x(1+x),再由函数为R上的奇函数,利用奇函数的定义加以计算,即可算出当x<0时函数f(x)的表达式.
解答:解:∵当x>0时,f(x)=(1-x)x,
∴当x<0时,由-x>0得f(-x)=[1-(-x)]•(-x)=-x(1+x),
又∵f(x)是R上的奇函数,
∴f(x)=-f(-x),可得当x<0时f(x)=-[-x(1+x)]=x(1+x).
故答案为:x(1+x)
点评:本题给出奇函数在x>0时函数的表达式,求它在x<0时的表达式.着重考查了函数的奇偶性和求函数解析式的常用方法等知识,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

14、已知f(x)是R上的偶函数,f(2)=-1,若f(x)的图象向右平移1个单位长度,得到一个奇函数的图象,则f(1)+f(2)+f(3)+…+f(2010)=
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是R上的偶函数,当x≥0时,f(x)=2x,又a是g(x)=ln(x+1)-
2x
的零点,比较f(a),f(-2),f(1.5)的大小,用小于符号连接为
f(1.5)<f(a)<f(-2).
f(1.5)<f(a)<f(-2).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是R上的偶函数,当x≥0时,f(x)=
x

(1)求当x<0时,f(x)的表达式
(2)判断f(x)在区间(0,+∞)的单调性,并用定义加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是R上的偶函数,g(x)是R上的奇函数,且g(x)=f(x-1),若g(-1)=2,则f(2008)的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知下列四个命题:
①命题“已知f(x)是R上的减函数,若a+b≥0,则f(a)+f(b)≤f(-a)+f(-b)”的逆否命题为真命题;
②若p或q为真命题,则p、q均为真命题;
③若命题p:?x∈R,x2-x+1<0,则?p:?x∈R,x2-x+1≥0;
④“sinx=
1
2
”是“x=
π
6
”的充分不必要条件.
其中正确的是(  )

查看答案和解析>>

同步练习册答案