精英家教网 > 高中数学 > 题目详情

【题目】对于给定的数列,设,即,…,中的最大值,则称数列是数列的“和谐数列”.

1)设,求的值,并证明数列是等差数列;

2)设数列都是公比为q的正项等比数列,若数列是等差数列,求公比q的取值范围;

3)设数列满足,数列是数列的“和谐数列”,且m为常数,2,…,k),求证:

【答案】1;证明详见解析;(2;(3)详见解析.

【解析】

1)根据和谐数列定义求出,求出,利用等差数列定义证明即可;

2)分两种情况讨论,时,可得,计算知数列不是等差数列,当时,可满足是等差数列;

3)根据条件可证明,可得,所以,即证.

1)由题意知

因为恒成立,

所以

4

(与n无关的常数),

所以数列是公差为1的等差数列.

2)因为数列都是公比为q的正项等比数列,

所以

时,;

所以

因为

所以

此时数列不是等差数列,与题意矛盾.

时,

所以

(与n无关的常数),

所以数列是等差数列,符合题意.

综上,公比q的取值范围是

3)因为

所以

上面两式相减得

因为

,所以

所以

所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】2020年寒假期间新冠肺炎肆虐,全国人民众志成城抗击疫情.某市要求全体市民在家隔离,同时决定全市所有学校推迟开学.某区教育局为了让学生“停课不停学”,要求学校各科老师每天在网上授课,每天共280分钟,请学生自主学习.区教育局为了了解高三学生网上学习情况,上课几天后在全区高三学生中采取随机抽样的方法抽取了100名学生进行问卷调查,为了方便表述把学习时间在分钟的学生称为类,把学习时间在分钟的学生称为类,把学习时间在分钟的学生称为类,随机调查的100名学生学习时间的人数频率分布直方图如图所示:以频率估计概率回答下列问题:

1)求100名学生中三类学生分别有多少人?

2)在三类学生中,按分层抽样的方法从上述100个学生中抽取10人,并在这10人中任意邀请3人电话访谈,求邀请的3人中是类的学生人数的分布列和数学期望;

3)某校高三(1)班有50名学生,某天语文和数学老师计划分别在19:0019:4020:0020:40在线上与学生交流,由于受校园网络平台的限制,每次只能30个人同时在线学习交流.假设这两个时间段高三(1)班都有30名学生相互独立地随机登录参加学习交流.表示参加语文或数学学习交流的人数,当为多少时,其概率最大.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】 为等差数列 的前 项和,其中 ,且

(1)求常数 的值,并写出 的通项公式;

(2)记 ,数列 的前 项和为 ,若对任意的 ,都有 ,求常数 的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2020年新冠肺炎疫情暴发以来,中国政府迅速采取最全面、最严格、最彻底的防控举措,坚决遏制疫情蔓延势头,努力把疫情影响降到最低,为全世界抗击新冠肺炎疫情做岀了贡献.为普及防治新冠肺炎的相关知识,某高中学校开展了线上新冠肺炎防控知识竞答活动,现从大批参与者中随机抽取200名幸运者,他们的得分(满分100分)数据统计结果如图:

1)若此次知识竞答得分整体服从正态分布,用样本来估计总体,设分别为这200名幸运者得分的平均值和标准差(同一组数据用该区间中点值代替),求的值(的值四舍五入取整数),并计算

2)在(1)的条件下,为感谢大家积极参与这次活动,对参与此次知识竞答的幸运者制定如下奖励方案:得分低于的获得1次抽奖机会,得分不低于的获得2次抽奖机会.假定每次抽奖中,抽到18元红包的概率为,抽到36元红包的概率为.已知高三某同学是这次活动中的幸运者,记为该同学在抽奖中获得红包的总金额,求的分布列和数学期望,并估算举办此次活动所需要抽奖红包的总金额.

参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在三棱台中,平面

1)证明

2)若的中点,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,过点的直线与椭圆相交于两点.

1)当直线的斜率时,求的面积;

2)当时,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】秉承绿水青山就是金山银山的发展理念,某市环保部门通过制定评分标准,先对本市50%的企业进行评估,评出四个等级,并根据等级给予相应的奖惩,如下表所示:

评估得分

评定等级

不合格

合格

良好

优秀

奖励(万元)

20

40

80

1)环保部门对企业抽查评估完成后,随机抽取了50家企业的评估得分(分)为样本,得到如下频率分布表:

评估得分

频率

0.04

0.10

0.20

0.12

其中表示模糊不清的两个数字,但知道样本评估得分的平均数是73.6.现从样本外的数百个企业评估得分中随机抽取3个,若以样本中频率为概率,求至少有两家企业的奖励不少于40万元的概率;

2)某企业为取得一个好的得分,在评估前投入80万元进行技术改造,由于技术水平问题,被评定为合格”“良好优秀的概率分别为,且由此增加的产值分别为20万元,40万元和60万元.设该企业当年因改造而增加的利润为万元,求的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正三棱柱的每条棱的长度都相等,分别是棱的中点,是棱上一点,且平面.

1)证明:平面.

2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在传染病学中,通常把从致病刺激物侵人机体或者对机体发生作用起,到机体出现反应或开始呈现该疾病对应的相关症状时止的这一阶段称为潜伏期. 一研究团队统计了某地区1000名患者的相关信息,得到如下表格:

潜伏期(单位:天)

人数

1)求这1000名患者的潜伏期的样本平均数x (同一组中的数据用该组区间的中点值作代表)

2)该传染病的潜伏期受诸多因素的影响,为研究潜伏期与患者年龄的关系,以潜伏期是否超过6天为标准进行分层抽样,从上述1000名患者中抽取200人,得到如下列联表.请将列联表补充完整,并根据列联表判断是否有95%的把握认为潜伏期与患者年龄有关;

潜伏期

潜伏期

总计

岁以上(含岁)

岁以下

总计

3)以这1000名患者的潜伏期超过6天的频率,代替该地区1名患者潜伏期超过6天发生的概率,每名患者的潜伏期是否超过6天相互独立,为了深入研究,该研究团队随机调查了20名患者,其中潜伏期超过6天的人数最有可能(即概率最大)是多少?

附:

,其中.

查看答案和解析>>

同步练习册答案