精英家教网 > 高中数学 > 题目详情
在△ABC中,a,b,c分别为角A,B,C的对边,且:(a2+b2)sin(A-B)=(a2-b2)sinC
(1)若a=3,b=4,求|
CA
+
CB|
的值.
(2)若∠C=60°,△ABC面积为
3
.求
AB
AC
+
AC
CB
+
CB
AB
的值.
分析:直接利用两角差的正弦函数以及正弦定理与余弦定理化简表达式,
(1)根据a=3,b=4,判断三角形的形状,然后求出|
CA
+
CB|
的值.
(2)利用(1)的结果,结合∠C=60°,则a2+b2-c2≠0,推出a=b.△ABC为等边三角形,然后求出
AB
AC
+
AC
CB
+
CB
AB
的值.
解答:精英家教网解:由已知有:(a2+b2)(a•
a2+c2-b2
2ac
-b•
b2+c2-a2
2bc
)=(a2-b2)•c

∴有:(a2+b2)•
2(a2-b2)
2c
=(a2-b2)•c

即:(a2-b2)(a2+b2-c2)=0.
(1)若a=3,b=4,则a≠b∴a2+b2=c2∴△ABC为直角三角形,∠C=90°,c=5,而|
CA
+
CB|
=5

(2)由(1)可知(a2-b2)(a2+b2-c2)=0.又∠C=60°,则a2+b2-c2≠0,
∴a=b.∴△ABC为等边三角形,
设边长为x,则
3
4
x2=
3
∴x=2,
AB
BC
+
BC•
CA
+
CA
AB
=-2-2-2=-6
点评:本题是中档题,考查三角函数的化简求值,正弦定理,余弦定理的应用,以及向量的数量积的应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,∠A、∠B、∠C所对的边长分别是a、b、c.满足2acosC+ccosA=b.则sinA+sinB的最大值是(  )
A、
2
2
B、1
C、
2
D、
1+
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a<b<c,B=60°,面积为10
3
cm2,周长为20cm,求此三角形的各边长.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a,b,c分别为角A,B,C的对边,已知
.
m
=(cos
C
2
,sin
C
2
)
.
n
=(cos
C
2
,-sin
C
2
)
,且
m
n
=
1
2

(1)求角C;
(2)若a+b=
11
2
,△ABC的面积S=
3
3
2
,求边c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,A,B,C为三个内角,若cotA•cotB>1,则△ABC是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知y=f(x)函数的图象是由y=sinx的图象经过如下三步变换得到的:
①将y=sinx的图象整体向左平移
π
6
个单位;
②将①中的图象的纵坐标不变,横坐标缩短为原来的
1
2

③将②中的图象的横坐标不变,纵坐标伸长为原来的2倍.
(1)求f(x)的周期和对称轴;
(2)在△ABC中,a,b,c分别是角A,B,C的对边,且f(C)=2,c=1,ab=2
3
,且a>b,求a,b的值.

查看答案和解析>>

同步练习册答案