精英家教网 > 高中数学 > 题目详情

【题目】如图,AB⊙O的直径,PA垂直于⊙O所在的平面,M为圆周上任意一点,AN⊥PM,N为垂足

(1)求证:AN⊥平面PBM;

(2)AQ⊥PB,垂足为Q,求证:NQ⊥PB.

【答案】(1)见解析(2)见解析

【解析】

1)由平面,结合得出平面P,于是,又,根据线面垂直判定定理得结果;(2)由(1)易得,又得出平面,进而可得结果.

证明 (1)∵AB为⊙O的直径,∴AM⊥BM.

又PA⊥平面ABM,∴PA⊥BM,

又∵PA∩AM=A,∴BM⊥平面PAM.

又AN平面PAM,∴BM⊥AN.

又AN⊥PM,且BM∩PM=M,

∴AN⊥平面PBM.

(2)由(1)知AN⊥平面PBM,PB平面PBM,∴AN⊥PB.

又∵AQ⊥PB,AN∩AQ=A,

∴PB⊥平面ANQ.又NQ平面ANQ.

∴PB⊥NQ.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,直线的参数方程为为参数),在极坐标系中,圆C的极坐标方程为:

(1)求圆C的直角坐标方程;

(2)设圆C与直线交于两点,若点的坐标为,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】图1是由矩形和菱形组成的一个平面图形,其中,将其沿折起使得重合,连结,如图2.

(1)证明图2中的四点共面,且平面平面

(2)求图2中的四边形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在一个盒子中,放有标号分别为123的三张卡片,现从这个盒子中,有放回地先后抽得两张卡片的标号分别为xy,设O为坐标原点,点P的坐标为.

1)求随机变量的最大值,并求事件取得最大值的概率;

2)求随机变量的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

)求函数的单调区间;

)若函数上是减函数,求实数a的最小值;

)若,使)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是曲线上动点以及定点

1)当时,求曲线在点处的切线方程;

2)求面积的最小值,并求出相应的点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法正确的有(

①在回归分析中,可以借助散点图判断两个变量是否呈线性相关关系.

②在回归分析中,可以通过残差图发现原始数据中的可疑数据,残差平方和越小,模型的拟合效果越好.

③在回归分析模型中,相关系数的绝对值越大,说明模型的拟合效果越好.

④在回归直线方程中,当解释变量每增加1个单位时,预报变量增加0.1个单位.

A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2015年推出一种新型家用轿车,购买时费用为16.9万元,每年应交付保险费、养路费及汽油费共1.2万元,汽车的维修费为:第一年无维修费用,第二年为0.2万元,从第三年起,每年的维修费均比上一年增加0.2万元.

(I)设该辆轿车使用n年的总费用(包括购买费用、保险费、养路费、汽油费及维修费)为f(n),求f(n)的表达式;

(II)这种汽车使用多少报废最合算(即该车使用多少年,年平均费用最少)?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四棱锥底面,底面为等腰梯形,,点E边上的点,.

1)求证:平面

2)若,求点E到平面的距离 .

查看答案和解析>>

同步练习册答案