精英家教网 > 高中数学 > 题目详情

【题目】关于函数,有下述四个结论:

①若内单调递增,则.

②若内单调递减,则.

③若内有且仅有一个极大值点,则.

④若内有且仅有一个极小值点,则.

其中所有正确结论的序号是(

A.①③B.②③C.①④D.③④

【答案】A

【解析】

根据三角函数的单调性判断①②的正确性;根据三角函数的极值点判断③④的正确性.

依题意函数

,解得),

内单调递增,则.所以①正确.

,解得),

内单调递减,则,此不等式组无解.所以②错误.

对于③,由,解得),依题意内有且仅有一个解,即

,即,所以的取值范围是,所以③正确.

对于④,由,解得),依题意内有且仅有一个解,即

,即,所以的取值范围是,所以④错误.

故正确的为①③.

故选:A

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某校为了增强学生的记忆力和辨识力,组织了一场类似《最强大脑》的PK赛,两队各由4名选手组成,每局两队各派一名选手PK,比赛四局.除第三局胜者得2分外,其余各局胜者均得1分,每局的负者得0.假设每局比赛A队选手获胜的概率均为,且各局比赛结果相互独立,比赛结束时A队的得分高于B队的得分的概率为( )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2017·石家庄一模)祖暅是南北朝时期的伟大数学家,5世纪末提出体积计算原理,即祖暅原理:“幂势既同,则积不容异”.意思是:夹在两个平行平面之间的两个几何体,被平行于这两个平面的任何一个平面所截,如果截面面积都相等,那么这两个几何体的体积一定相等.现有以下四个几何体:图①是从圆柱中挖去一个圆锥所得的几何体,图②、图③、图④分别是圆锥、圆台和半球,则满足祖暅原理的两个几何体为(  )

A. ①② B. ①③

C. ②④ D. ①④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】疫情期间,一同学通过网络平台听网课,在家坚持学习.某天上午安排了四节网课,分别是数学,语文,政治,地理,下午安排了三节,分别是英语,历史,体育.现在,他准备在上午下午的课程中各任选一节进行打卡,则选中的两节课中至少有一节文综学科(政治、历史、地理)课程的概率为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】201835日上午,李克强总理做政府工作报告时表示,将新能源汽车车辆购置税优惠政策再延长三年,自201811日至20201231日,对购置的新能源汽车免征车辆购置税.新能源汽车销售的春天来了!从衡阳地区某品牌新能源汽车销售公司了解到,为了帮助品牌迅速占领市场,他们采取了保证公司正常运营的前提下实行薄利多销的营销策略(即销售单价随日销量(台)变化而有所变化),该公司的日盈利(万元),经过一段时间的销售得到的一组统计数据如下表:

日销量

1

2

3

4

5

日盈利万元

6

13

17

20

22

将上述数据制成散点图如图所示:

1)根据散点图判断中,哪个模型更适合刻画之间的关系?并从函数增长趋势方面给出简单的理由;

2)根据你的判断及下面的数据和公式,求出关于的回归方程,并预测当日销量时,日盈利是多少?

参考公式及数据:线性回归方程,其中

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019年入冬时节,长春市民为了迎接2022年北京冬奥会,增强身体素质,积极开展冰上体育锻炼.现从速滑项目中随机选出100名参与者,并由专业的评估机构对他们的锻炼成果进行评估打分(满分为100分)并且认为评分不低于80分的参与者擅长冰上运动,得到如图所示的频率分布直方图:

1)求的值;

2)将选取的100名参与者的性别与是否擅长冰上运动进行统计,请将下列列联表补充完整,并判断能否在犯错误的概率在不超过0.01的前提下认为擅长冰上运动与性别有关系?

擅长

不擅长

合计

男性

30

女性

50

合计

100

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对某两名高三学生在连续9次数学测试中的成绩(单位:分)进行统计得到折线图,下面是关于这两位同学的数学成绩分析.

①甲同学的成绩折线图具有较好的对称性,故平均成绩为130分;

②根据甲同学成绩折线图提供的数据进行统计,估计该同学平均成绩在区间内;

③乙同学的数学成绩与测试次号具有比较明显的线性相关性,且为正相关;

④乙同学连续九次测验成绩每一次均有明显进步.

其中正确的个数为(  )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中

(1)是函数的极值点,求实数的值;

(2)若对任意的为自然对数的底数)都有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019年庆祝中华人民共和国成立70周年阅兵式彰显了中华民族从站起来、富起来迈向强起来的雄心壮志.阅兵式规模之大、类型之全均创历史之最,编组之新、要素之全彰显强军成就.装备方阵堪称强军利刃”“强国之盾,见证着人民军队迈向世界一流军队的坚定步伐.此次大阅兵不仅得到了全中国人的关注,还得到了无数外国人的关注.某单位有10位外国人,其中关注此次大阅兵的有8位,若从这10位外国人中任意选取3位做一次采访,则被采访者中至少有2位关注此次大阅兵的概率为(

A.B.C.D.

查看答案和解析>>

同步练习册答案