精英家教网 > 高中数学 > 题目详情
在平面直角坐标系中,若双曲线的焦距为8,则  
3

试题分析:通过双曲线的方程,判断实轴所在轴,求出c,利用焦距求出m的值即可. 解:因为在平面直角坐标系Oxy中,双曲线的焦距为8,所以m>0,焦点在x轴,所以a2=m,b2=m2+4,所以c2=m2+m+4,又双曲线的焦距为8,所以:m2+m+4=16,即m2+m-12=0,解得m=3或m=-4(舍).故答案为:3.
点评:本题考查双曲线的简单性质的应用,判断双曲线的焦点所在的轴是解题的关键,法则容易出错.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

已知双曲线的一个焦点与抛物线的焦点重合,则此双曲线的离心率为(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

双曲线的离心率等于2,且与椭圆有相同的焦点,求此双曲线方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知椭圆的左焦点为F,过点F的直线交椭圆于A、B两点,线段AB的中点为G,AB的中垂线与x轴和y轴分别交于D、E两点.

(Ⅰ)若点G的横坐标为,求直线AB的斜率;
(Ⅱ)记△GFD的面积为S1,△OED(O为原点)的面积为S2
试问:是否存在直线AB,使得S1=S2?说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆过点,椭圆左右焦点分别为,上顶点为为等边三角形.定义椭圆C上的点的“伴随点”为.
(1)求椭圆C的方程;
(2)求的最大值;
(3)直线l交椭圆CAB两点,若点AB的“伴随点”分别是PQ,且以PQ为直径的圆经过坐标原点O.椭圆C的右顶点为D,试探究ΔOAB的面积与ΔODE的面积的大小关系,并证明.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知双曲线的左右焦点分别是,设是双曲线右支上一点,上投影的大小恰好为,且它们的夹角为,则双曲线的离心率为(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

椭圆的右焦点为,右准线为,离心率为,点在椭圆上,以为圆心,为半径的圆与的两个公共点是

(1)若是边长为的等边三角形,求圆的方程;
(2)若三点在同一条直线上,且原点到直线的距离为,求椭圆方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的离心率等于,点在椭圆上.
(I)求椭圆的方程;
(Ⅱ)设椭圆的左右顶点分别为,,过点的动直线与椭圆相交于,两点,是否存在定直线,使得的交点总在直线上?若存在,求出一个满足条件的值;若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知椭圆的左右焦点分别为,由4个点组成一个高为,面积为的等腰梯形.
(1)求椭圆的方程;
(2)过点的直线和椭圆交于两点,求面积的最大值.

查看答案和解析>>

同步练习册答案