(本小题满分14分)
已知圆C经过点 ,圆心落在 轴上(圆心与坐标原点不重合),且与直线 相切.
(Ⅰ)求圆 C 的标准方程;
(Ⅱ)求直线Y=X 被圆C所截得 的弦长;
(Ⅲ)l2是与l1垂直并且在Y轴上的截距为b的直线,若)l2与圆 C 有两个不同的交点,求b的取值范围.
(Ⅰ)设圆 的圆心坐标为 ,半径为 ,则由题意得
解得 或 (舍去),.
∴ 圆 的标准方程为 . 5分
(Ⅱ)取所截弦的中点,并和圆心相连结,则该线段就是圆心到弦所在直线的距离(弦心距).再连结圆心和弦的一个端点(所连线段即为一条半径),易知由弦心距、半径和弦的一半可构成一个直角三角形.
∵ 由点到直线的距离公式可求得弦心距为 ,
∴ 由勾股定理可求得弦的一半的长度为 .
∴ 所求的弦长为 . 9分
(Ⅲ)易知直线 的方程为 . 10分
∵ 直线 与圆 有两个不同的交点, ∴ 圆心到 的距离小于半径 .
∴ . 整理得 . 12分
解得 的取值范围为 . 14分
【解析】略
科目:高中数学 来源: 题型:
3 |
π |
4 |
π |
4 |
π |
2 |
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分14分)设椭圆C1的方程为(a>b>0),曲线C2的方程为y=,且曲线C1与C2在第一象限内只有一个公共点P。(1)试用a表示点P的坐标;(2)设A、B是椭圆C1的两个焦点,当a变化时,求△ABP的面积函数S(a)的值域;(3)记min{y1,y2,……,yn}为y1,y2,……,yn中最小的一个。设g(a)是以椭圆C1的半焦距为边长的正方形的面积,试求函数f(a)=min{g(a), S(a)}的表达式。
查看答案和解析>>
科目:高中数学 来源:2011年江西省抚州市教研室高二上学期期末数学理卷(A) 题型:解答题
(本小题满分14分)
已知=2,点()在函数的图像上,其中=.
(1)证明:数列}是等比数列;
(2)设,求及数列{}的通项公式;
(3)记,求数列{}的前n项和,并证明.
查看答案和解析>>
科目:高中数学 来源:2015届山东省威海市高一上学期期末考试数学试卷(解析版) 题型:解答题
(本小题满分14分)
某网店对一应季商品过去20天的销售价格及销售量进行了监测统计发现,第天()的销售价格(单位:元)为,第天的销售量为,已知该商品成本为每件25元.
(Ⅰ)写出销售额关于第天的函数关系式;
(Ⅱ)求该商品第7天的利润;
(Ⅲ)该商品第几天的利润最大?并求出最大利润.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年广东省高三下学期第一次月考文科数学试卷(解析版) 题型:解答题
(本小题满分14分)已知的图像在点处的切线与直线平行.
⑴ 求,满足的关系式;
⑵ 若上恒成立,求的取值范围;
⑶ 证明:()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com