精英家教网 > 高中数学 > 题目详情

【题目】已知等比数列{an}中a2=2,a5= ,则a1a2+a2a3+a3a4+…+anan+1等于(
A.16(1﹣4n
B.16(1﹣2n
C.
D.

【答案】C
【解析】解:设等比数列{an}的首项为a1 , 公比为q, 因为等比数列{an}中,a2=2,a5=
所以 = ,则q=
由a2=2得,a1=4,
所以anan+1=4 (4 )= =8
所以数列{anan+1}是以8为首项、 为公比的等比数列,
则a1a2+a2a3+a3a4+…+anan+1= =
故选:C.
【考点精析】认真审题,首先需要了解等比数列的基本性质({an}为等比数列,则下标成等差数列的对应项成等比数列;{an}既是等差数列又是等比数列== {an}是各项不为零的常数列).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数,且.

(1)求函数的极值;

(2)当时,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分10分)

已知函数f(x)=(x2+bx+b) (b∈R)

(1)当b=4时,求f(x)的极值;

(2)若f(x)在区间上单调递增,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法中,正确的是
①任取x>0,均有3x>2x
②当a>0,且a≠1时,有a3>a2
③y=( x是增函数.
④y=2|x|的最小值为1.
⑤在同一坐标系中,y=2x与y=2x的图象关于y轴对称.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】△ABC的三个内角A,B,C对应的边分别a,b,c,且acosC,bcosB,ccosA成等差数列,则角B等于(
A.30°
B.60°
C.90°
D.120°

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,bsinA=acosB.
(Ⅰ)求角B的大小;
(Ⅱ)若b=3,sinC=2sinA,求a,c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)为定义在[﹣1,1]上的奇函数,当x∈[﹣1,0]时,函数解析式为
(Ⅰ)求f(x)在[0,1]上的解析式;
(Ⅱ)求f(x)在[0,1]上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,甲、乙两位同学要测量河对岸A,B两点间的距离,今沿河岸选取相距40米的C,D两点,测得∠ACB=60°,∠BCD=45°,∠ADC=30°,∠CDB=90°求A,B两点间的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业生产的某种产品被检测出其中一项质量指标存在问题.该企业为了检查生产该产品的甲,乙两条流水线的生产情况,随机地从这两条流水线上生产的大量产品中各抽取件产品作为样本,测出它们的这一项质量指标值.若该项质量指标值落在内,则为合格品,否则为不合格品.表是甲流水线样本的频数分布表,图是乙流水线样本的频率分布直方图.

:甲流水线样本的频数分布表

质量指标值

频数

:乙流水线样本频率分布直方图

(Ⅰ)根据图,估计乙流水线生产产品该质量指标值的中位数.

(Ⅱ)若将频率视为概率,某个月内甲,乙两条流水线均生产了件产品,则甲,乙两条流水线分别生产出不合格品约多少件.

(Ⅲ)根据已知条件完成下面列联表,并回答是否有的把握认为“该企业生产的这种产品的质量指标值与甲,乙两条流水线的选择有关”?

甲生产线

乙生产线

合计

合格品

不合格品

合计

附: (其中样本容量)

查看答案和解析>>

同步练习册答案