精英家教网 > 高中数学 > 题目详情
若直线y=kx+2与双曲线x2-y2=6的右支交于不同的两点,则k的取值范围是(  )
A、(-
15
3
15
3
)
B、(0,
15
3
)
C、(-
15
3
,0)
D、(-
15
3
,-1)
分析:根据双曲线的方程求得渐近线方程,把直线与双曲线方程联立消去y,利用判别式大于0和k<-1联立求得k的范围.
解答:解:渐近线方程为y=±x,由
y=kx+2
x2-y2=6
消去y,整理得(k2-1)x2+4kx+10=0
k<-1
△=(4k)2-40(k2-1)>0
?-
15
3
<k<-1

故选D
点评:本题主要考查了直线与圆锥曲线的关系.考查了函数思想的应用,圆锥曲线与不等式知识的综合.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若直线y=kx+2与双曲线x2-y2=6只有一个交点,那么实数k的值是(  )
A、
15
3
,1
B、±
15
3
C、±1
D、±
15
3
,±1

查看答案和解析>>

科目:高中数学 来源: 题型:

若直线y=kx-2与抛物线y2=8x交于A、B两点,若线段AB的中点的横坐标是2,则|AB|=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若直线y=kx-2与焦点在x轴上的椭圆
x2
5
+
y2
m
=1
恒有公共点,则实数m的取值范围为
[4,5)
[4,5)

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)若直线y=kx+2与圆(x-2)2+(y-3)2=1相切,求实数k的值;
(2)若直线y=kx+2与圆(x-2)2+(y-3)2=1相离,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1,(a>b>0)
左、右焦点分别为F1(-c,0),F2(c,0),点A、B坐标为A(a,0),B(0,b),若△ABC面积为
3
2
,∠BF2A=120°.
(1)求椭圆的标准方程;
(2)若直线y=kx+2与椭圆交于不同的两点M、N,且以MN为直径的圆恰好过原点,求实数k的取值;
(3)动点P使得
F1P
F1F2
PF1
PF2
F2F
1
F2P
成公差小于零的等差数列,记θ为向量
PF1
PF2
的夹角,求θ的取值范围.

查看答案和解析>>

同步练习册答案