精英家教网 > 高中数学 > 题目详情
已知点是直线被椭圆所截得的线段中点,求直线的方程。

试题分析:由题意可设的方程为:


整理,得

的中点为

解得 
代入,得
,经验证
所以满足题目要求
所求的方程为:
点评:直线与椭圆相交的中点弦问题的求解一般有两种思路:其一,设出直线方程,与椭圆方程联立将中点坐标转化为两交点坐标,其二,采用点差法,即将两交点坐标分别代入椭圆方程,得到的两式子相减即可得到直线斜率,两种方法都要验证所求直线是否满足与椭圆有两交点
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,已知椭圆的上、下顶点分别为,点在椭圆上,且异于点,直线与直线分别交于点

(Ⅰ)设直线的斜率分别为,求证:为定值;
(Ⅱ)求线段的长的最小值;
(Ⅲ)当点运动时,以为直径的圆是否经过某定点?请证明你的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆长轴长、短轴长和焦距成等差数列,则该椭圆的离心率是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆(a>b>0)的焦距为4,且与椭圆有相同的离心率,斜率为k的直线l经过点M(0,1),与椭圆C交于不同两点A、B.
(1)求椭圆C的标准方程;
(2)当椭圆C的右焦点F在以AB为直径的圆内时,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆的离心率为 (   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知点P(4, 4),圆C:与椭圆E:有一个公共点A(3,1),F1、F2分别是椭圆的左、右焦点,直线PF1与圆C相切.

(Ⅰ)求m的值与椭圆E的方程;(Ⅱ)设Q为椭圆E上的一个动点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知椭圆过点,离心率为,左、右焦点分别为.点为直线上且不在轴上的任意一点,直线与椭圆的交点分别为为坐标原点.设直线的斜率分别为

(i)证明:
(ii)问直线上是否存在点,使得直线的斜率满足?若存在,求出所有满足条件的点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:(a>b>0),则称以原点为圆心,r=的圆为椭圆C的“知己圆”。
(Ⅰ)若椭圆过点(0,1),离心率e=;求椭圆C方程及其“知己圆”的方程;
(Ⅱ)在(Ⅰ)的前提下,若过点(0,m)且斜率为1的直线截其“知己圆”的弦长为2,求m的值;
(Ⅲ)讨论椭圆C及其“知己圆”的位置关系.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
已知椭圆,其左准线为,右准线为,抛物线以坐标原点为顶点,为准线,两点.
(1)求抛物线的标准方程;
(2)求线段的长度.

查看答案和解析>>

同步练习册答案