精英家教网 > 高中数学 > 题目详情

【题目】国内某知名连锁店分店开张营业期间,在固定的时间段内消费达到一定标准的顾客可进行一次抽奖活动,随着抽奖活动的有效开展,参与抽奖活动的人数越来越多,该分店经理对开业前天参加抽奖活动的人数进行统计, 表示开业第天参加抽奖活动的人数,得到统计表格如下:

经过进一步统计分析,发现具有线性相关关系.

(1)根据上表提供的数据,用最小二乘法求出关于的线性回归方程

(2)若该分店此次抽奖活动自开业始,持续天,参加抽奖的每位顾客抽到一等奖(价值元奖品)的概率为,抽到二等奖(价值元奖品)的概率为,抽到三等奖(价值元奖品)的概率为.

试估计该分店在此次抽奖活动结束时送出多少元奖品?

参考公式: .

【答案】(1)(2)

【解析】试题分析:(1)由公式,可得,再求均值,并由可得,进而可得线性回归方程;(2)先根据数学期望公式求每位获奖奖金的期望,再根据线性回归方程预测第8,9,10天人数,得到10天总人数,最后根据乘积得到总奖金数.

试题解析:(1)依题意:

关于的线性回归方程为.

(2)参加抽奖的每位顾客获得奖品金额为 的分布列为

(元).

关于的回归直线方程,预测

则此次活动参加抽奖的人数约为人,

(元),

所以估计该分店在此次抽奖活动结束时送出元奖品.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,设 与定点 的距离和它到直线 的距离的比是常数

(1)求点 的轨迹曲线 的方程:

(2)过定点 的直线 交曲线 两点,以 三点( 为坐标原点)为顶点作平行四边形 ,若点 刚好在曲线 上,求直线 的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某教育机构随机某校20个班级,调查各班关注汉字听写大赛的学生人数,根据所得数据的茎叶图,以组距为5将数据分组成[0,5),[5,10),[10,15),[15,20),[20,25),[25,30),[30,35),[35,40]时,所作的频率分布直方图如图所示,则原始茎叶图可能是(

A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】经销商经销某种农产品,在一个销售季度内,每售出该产品获利润500元,未售出的产品,每亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直图,如图所示.经销商为下一个销售季度购进了该农产品.以)表示下一个销售季度内的市场需求量, (单位:元)表示下一个销售季度内经销该农产品的利润.

(Ⅰ)将表示为的函数;

(Ⅱ)根据直方图估计利润不少于57000元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某颜料公司生产两种产品,其中生产每吨产品,需要甲染料吨,乙染料吨,丙染料吨,生产每吨产品,需要甲染料吨,乙染料吨,丙染料吨,且该公司一天之内甲、乙、丙三种染料的用量分别不超过吨、吨、吨,如果产品的利润为元/吨, 产品的利润为元/吨,则该颜料公司一天内可获得的最大利润为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,已知 tanAtanB﹣tanA﹣tanB=
(1)求∠C的大小;
(2)设角A,B,C的对边依次为a,b,c,若c=2,且△ABC是锐角三角形,求a2+b2的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【山东省实验中学2017届高三第一次诊断】已知椭圆的右焦点过点且与坐标轴不垂直的直线与椭圆交于两点当直线经过椭圆的一个顶点时其倾斜角恰好为

(1)求椭圆的方程

(2)设为坐标原点线段上是否存在点使得?若存在,求出实数的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知动直线过点,且与圆交于两点.

(1)若直线的斜率为,求的面积;

(2)若直线的斜率为,点是圆上任意一点,求的取值范围;

(3)是否存在一个定点(不同于点),对于任意不与轴重合的直线,都有平分,若存在,求出定点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,若acosA﹣bcosB=0,则三角形的形状是(
A.等腰三角形
B.直角三角形
C.等腰直角三角形
D.等腰三角形或直角三角形

查看答案和解析>>

同步练习册答案