精英家教网 > 高中数学 > 题目详情

(本题满分12分) 如图,有一块矩形空地,要在这块空地上辟一个内接四边形为绿地,使其四个顶点分别落在矩形的四条边上,已知AB=>2),BC=2,且AE=AH=CF=CG,设AE=,绿地面积为.

(1)写出关于的函数关系式,并指出这个函数的定义域;
(2)当AE为何值时,绿地面积最大?  (10分) 

(1)y=-2x2+(+2)x,(0<x≤2) ;
(2)当<6时,AE=时,绿地面积取最大值
≥6时,AE=2时,绿地面积取最大值2-4。

解析试题分析:(1)先求得四边形ABCD,△AHE的面积,再分割法求得四边形EFGH的面积,即建立y关于x的函数关系式;
(2)由(1)知y是关于x的二次函数,用二次函数求最值的方法求解.
解:(1)SΔAEH=SΔCFGx2, SΔBEF=SΔDGH-x)(2-x)
∴y=SABCD-2SΔAEH-2SΔBEF=2-x2-(-x)(2-x)=-2x2+(+2)x
∴y=-2x2+(+2)x,(0<x≤2)    (4分)
(2)当,即<6时,则x=时,y取最大值
≥2,即≥6时,y=-2x2+(+2)x,在0,2]上是增函数,
则x=2时,y取最大值2-4
综上所述:当<6时,AE=时,绿地面积取最大值
≥6时,AE=2时,绿地面积取最大值2-4。
考点:本试题主要考查了实际问题中的建模和解模能力,注意二次函数求最值的方法.
点评:解决该试题的关键是运用间接法,分割的思想来得到四边形EFGH的面积,从而建立关于x的函数关系式,运用该函数的思想求解最值。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
定义在上的奇函数,已知当时,
(1)写出上的解析式
(2)求上的最大值
(3)若上的增函数,求实数的范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)已知函数
(Ⅰ)当时,求函数的最小值;
(Ⅱ)若对任意,恒成立,试求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知:函数y=f (x)的定义域为R,且对于任意的a,b∈R,都有f (a+b)=f (a)+f (b),且当x>0时,f (x)<0恒成立.
证明:(1)函数y=f (x)是R上的减函数.
(2)函数y=f (x)是奇函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分15分)已知在定义域上是奇函数,且在上是减函数,图像如图所示.
(1)化简:
(2)画出函数上的图像;
(3)证明:上是减函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知f(x)=ax2+bx+c的图象过原点(-1,0),是否存在常数a、b、c,使不等式x≤f(x) ≤对一切实数x均成立?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题12分)已知).
(1)判断函数的奇偶性,并证明;
(2)若,用单调性定义证明函数在区间上单调递减;
(3)是否存在实数,使得的定义域为时,值域为
,若存在,求出实数的取值范围;若不存在,则说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)经市场调查,某种商品在过去50天的销售量和价格均为销售时间t(天)的函数,已知前30天价格为,后20天价格为f(t)="45" (31£ t £50, tÎN),且销售量近似地满足g(t)=" -2t+200" (1£t£50, tÎN).
(I)写出该种商品的日销售额S与时间t的函数关系式;
(II)求日销售额S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)设定义域都为的两个函数的解析式分别为
(1)求函数的值域;
(2)求函数的值域.

查看答案和解析>>

同步练习册答案