精英家教网 > 高中数学 > 题目详情
对于平面直角坐标系内的任意两点A(x1,y1),B(x2,y2),A(x1,y1),B(x2,y2)定义它们之间的一种“距离”:||AB||=|x2-x1|+|y2-y1|.给出下列三个命题:
①若点C在线段AB上,则||AC||+||CB||=||AB||;
②在△ABC中,||AC||+||CB||>||AB||;
③在△ABC中,若∠A=90°,则||AB||2+||AC||2=||BC||2
其中错误的个数为(  )
A.0B.1C.2D.3
对于①若点C在线段AB上,设C点坐标为(x0,y0),x0在x1、x2之间,y0在y1、y2之间,则|AC|+|CB|=|x0-x1|+|y0-y1|+|x2-x0|+|y2-y0|=|x2-x1|+|y2-y1|=|AB|成立,故①正确.
对于②在△ABC中,|AC|+|CB|=|x0-x1|+|y0-y1|+|x2-x0|+|y2-y0|≥|(x0-x1)+(x2-x0)|+|(y0-y1)+(y2-y0)|=|x2-x1|+|y2-y1|=|AB|,故②不一定成立
对于③平方后,是几何距离而非题目定义的距离,明显不成立;
∴错误的个数为2个,
故选C.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,圆与坐标轴交于点.
⑴求与直线垂直的圆的切线方程;
⑵设点是圆上任意一点(不在坐标轴上),直线轴于点,直线交直线于点
①若点坐标为,求弦的长;②求证:为定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

过定点P(2,1)作直线l,分别与x轴、y轴正向交于A,B两点,求使△AOB面积最小时的直线方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知点A(1,0),B(-1,0),过点C(0,-1)的直线l与线段AB相交,则直线l的倾斜角范围是(  )
A.[45°,135°]B.[45°,90°)∪(90°,135°]
C.[0°,45°]∪[135°,180°]D.[0°,135°]

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过点P(1,2)作直线l与圆(x-2)2+y2=9相交于A,B两点,那么|AB|的最小值为(  )
A.2B.4C.3D.6

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知两个点M(-3,0)和N(3,0),若直线上存在点P,使|PM|+|PN|=10,则称该直线为“A型直线”,则下列直线
①x=6②y=-5③y=x④y=2x+1中为“A型直线”的是______(填上所有正确结论的序号)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

与直线相切,正实数b的值为   (    )
A.B.C.D.3

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

直线与圆相交于两点,则是“的面积为”的(    )
充分而不必要条件       必要而不充分条件
充分必要条件           既不充分又不必要条件

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在空间直角坐标系O-xyz中,点P(-1,-2,7)与点Q(2,0,1)之间的距离为______.

查看答案和解析>>

同步练习册答案