精英家教网 > 高中数学 > 题目详情
3.若函数y=f(x)及y=g(x)的图象分别如图所示,方程f(g(x))=0、g(f(x))=0的实根个数分别为a、b,则a+b=10.

分析 结合函数图象把方程根的个数转化为函数图象的交点个数,可分别求得a,b进而可得答案.

解答 解:由图象知,f(x)=0有3个根,0,±m,1<m<2,
g(x)=0有2个根,-2<n<-1,0<p<1,
由f(g(x))=0,得g(x)=0或±x1
由图象可知g(x)所对每一个值都能有2个根,因而a=6;
由g(f(x))=0,知f(x)=n 或p,
由图象可以看出n时有1根,
而p时有3个,
即b=1+3=4,
∴a+b=6+4=10,
故答案为:10.

点评 本题主要考查函数函数的图象及其应用,考查方程根的个数,利用数形结合思想是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知f(x)=x2-2x+5,当x∈[t,t+1]时,求f(x)的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知全集为R,集合A={x|x≤1},B={x|x≥-2},则A∪B=(  )
A.RB.{x|-2≤x≤1}C.AD.B

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若命题p:?x0∈R,使x02+(a-1)x0+1<0,则该命题的否定¬p为(  )
A.?x0∉R,使x02+(a-1)x0+1<0B.?x∈R,x2+(a-1)x+1<0
C.?x0∈R,使x02+(a-1)x0+1≥0D.?x∈R,x2+(a-1)x+1≥0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.幂函数y=xa,y=xb,y=xc,y=xd在第一象限的图象如图所示,则a,b,c,d的大小关系是 (  )
A.a>b>c>dB.d>b>c>aC.d>c>b>aD.b>c>d>a

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设M=a+$\frac{1}{a-2}$(2<a<3),$N=x(4\sqrt{3}-3x)(0<x<\frac{{4\sqrt{3}}}{3})$,则M,N的大小关系为M>N.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.计算:
(1)$\frac{2lg2+lg3}{1+\frac{1}{2}lg0.36+\frac{1}{3}lg8}$;       
(2)2$\sqrt{3}$×$\root{6}{12}$×$\root{3}{\frac{3}{2}}$
(3)已知x+x-1=3,求$\frac{{{x^{\frac{1}{2}}}+{x^{-\frac{1}{2}}}}}{{{x^2}-{x^{-2}}}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.(1)角α终边经过点P0(-3,-4),求sinα,cosα,tanα的值.
(2)已知角终边上一点$P(-\sqrt{3},m)({m≠0})$,且sinα=$\frac{{\sqrt{2}}}{4}$m,求cosα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知全集U={1,2,3,4,5,6,7},A={2,4,6},B={1,3,5},则A∩∁UB等于(  )
A.{2,5}B.{1,3,5}C.{2,4,5}D.{2,4,6}

查看答案和解析>>

同步练习册答案