分析 (I)由${S_n}=2{a_n}-1({n∈{N^*}})$,可得n=1时,a1=2a1-1,解得a1.n≥2时,an=Sn-Sn-1,可得an=2an-1.再利用等比数列的通项公式即可得出.
( II)bn=log2an+1=n.可得$\frac{1}{{b}_{n}{b}_{n+1}}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}-\frac{1}{n+1}$.利用“裂项求和”方法即可得出.
解答 解:(I)∵${S_n}=2{a_n}-1({n∈{N^*}})$,∴n=1时,a1=2a1-1,解得a1=1.
n≥2时,an=Sn-Sn-1=2an-1-(2an-1-1),可得an=2an-1.
∴数列{an}是以首项为1,公比为2的等比数列,
∴an=2n-1.
( II)bn=log2an+1=n.
∴$\frac{1}{{b}_{n}{b}_{n+1}}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}-\frac{1}{n+1}$.
∴Tn=$(1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})$+…+$(\frac{1}{n}-\frac{1}{n+1})$=1-$\frac{1}{n+1}$=$\frac{n}{n+1}$.
点评 本题考查了“裂项求和”方法、等比数列的通项公式、数列递推关系,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
A. | $\frac{2}{3}$ | B. | $\frac{3}{2}$ | C. | -$\frac{2}{3}$ | D. | -$\frac{3}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 向左平移$\frac{π}{3}$个单位,再把所得各点的横坐标缩短到原来的$\frac{1}{2}$倍 | |
B. | 向左平移$\frac{π}{3}$个单位,再把所得各点的横坐标伸长到原来的2倍 | |
C. | 向左平移$\frac{π}{6}$个单位,再把所得各点的横坐标缩短到原来的$\frac{1}{2}$倍 | |
D. | 向左平移$\frac{π}{6}$个单位,再把所得各点的横坐标伸长到原来的2倍 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | {0,4} | B. | {-4,0} | C. | {-4,0,4} | D. | {0} |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com