精英家教网 > 高中数学 > 题目详情

【题目】随机调查某城市80名有子女在读小学的成年人,以研究晚上八点至十点时间段辅导子女作业与性别的关系,得到下面的数据表:

    是否辅导

性别

辅导

不辅导

合计

25

60

合计

40

80

1)请将表中数据补充完整;

2)用样本的频率估计总体的概率,估计这个城市有子女在读小学的成人女性晚上八点至十点辅导子女作业的概率;

3)根据以上数据,能否有99%以上的把握认为“晚上八点至十点时间段是否辅导子女作业与性别有关?”.

参考公式:,其中.

参考数据:

0.15

0.10

0.05

0.025

0.010

0.005

2.072

2.706

3.841

5.024

6.635

7.879

【答案】1)见解析;(2;(3)有把握.

【解析】

1)由表可依次求出男性不辅导的人数、女性辅导的人数、不辅导的人数、女性的人数、女性不辅导的人数,由此得到答案;

2)根据频率的计算公式求解即可;

3)求出,然后与比较大小,由此可求得结论.

解:(1)如表,

    是否辅导

性别

辅导

不辅导

合计

25

35

60

15

5

20

合计

40

40

80

2)在样本中有20位女士,其中有15位辅导孩子作业,其频率为

∴估计成人女士晚上八点至十点辅导孩子作业的概率为

3)∵

∴有99%的把握认为“晚上八点至十点时间是否段辅导孩子作业与性别有关”.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数处取得极值.

1)求,并求的单调区间;

2)证明:当时,.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】目前,我国老年人口比例不断上升,造成日趋严峻的人口老龄化问题.20191012日,北京市老龄办、市老龄协会联合北京师范大学中国公益研究院发布《北京市老龄事业发展报告(2018)》,相关数据有如下图表.规定年龄在15岁至59岁为劳动年龄,具备劳动力,60岁及以上年龄为老年人,据统计,2018年底北京市每2.4名劳动力抚养1名老年人.

(Ⅰ)请根据上述图表计算北京市2018年户籍总人口数和北京市2018年的劳动力数;(保留两位小数)

(Ⅱ)从2014年起,北京市老龄人口与年份呈线性关系,比照2018年户籍老年人人口年龄构成,预计到2020年年底,北京市90以上老人达到多少人?(精确到1人)

(附:对于一组数据其回归直线的斜率和截距的最小二乘法估计分别为:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】P2P平台需要了解该平台投资者的大致年龄分布,发现其投资者年龄大多集中在区间岁之间,对区间岁的人群随机抽取20人进行了一次理财习惯调查,得到如下统计表和各年龄段人数频率分布直方图:

组数

分组

人数

第一组

2

第二组

a

第三组

5

第四组

4

第五组

3

第六组

2

1)求a的值并画出频率分布直方图;

2)从被调查的20人且年龄在岁中的投资者中随机抽取3人调查对其P2P理财观的看法活动,记这3人中来自于区间岁年龄段的人数为X,求随机变量X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥,四边形为平行四边形,中点.

1)求证:平面

2)求证:平面平面

3)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆的圆心为,点是圆内一个定点,点是圆上任意一点,线段的垂直平分线与半径相交于点.

1)求动点的轨迹的方程;

2)给定点,设直线不经过点且与轨迹相交于两点,以线段为直径的圆过点.证明:直线过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为自然对数的底数).

1)若,求函数的图像在点处的切线方程;

2上单调递增,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆在左、右焦点分别为,上顶点为点,若是面积为的等边三角形.

1)求椭圆的标准方程;

2)已知是椭圆上的两点,且,求使的面积最大时直线的方程(为坐标原点).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在中,的中点,.现将沿翻折至,得四棱锥.

1)证明:

2)若,求直线与平面所成角的正切值

查看答案和解析>>

同步练习册答案