精英家教网 > 高中数学 > 题目详情

【题目】椭圆 的左、右焦点分别为F1 , F2 , 弦AB过F1 , 若△ABF2的内切圆周长为π,A,B两点的坐标分别为(x1 , y1),(x2 , y2),则|y1﹣y2|的值为

【答案】
【解析】解:椭圆 中,a2=25且b2=16,∴a=5,c= ,∴椭圆的焦点分别为F1(﹣3,0)、F2(3,0),

设△ABF2的内切圆半径为r,

∵△ABF2的内切圆周长为π,∴r=

根据椭圆的定义,得|AB|+|AF2|+|BF2|=(|AF1|+|AF2|)+(|BF1|+|BF2|)=4a=20.

∴△ABF2的面积S= (|AB|+|AF2|+|BF2|)×r= ×20× =5,

又∵△ABF2的面积S= = ×|y1|×|F1F2|+ ×|y2|×|F1F2|

= ×(|y1|+|y2|)×|F1F2|=4|y2﹣y1|(A、B在x轴的两侧),

∴4|y1﹣y2|=5,解得|y1﹣y2|=

所以答案是:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】围建一个面积为360m2的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修),其它三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2m的进出口,已知旧墙的维修费用为45元/m,新墙的造价为180元/m,设利用的旧墙的长度为x(单位:m),修建此矩形场地围墙的总费用为y(单位:元). (Ⅰ)将y表示为x的函数:
(Ⅱ)试确定x,使修建此矩形场地围墙的总费用最小,并求出最小总费用.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对任意实数x,[x]表示不超过x的最大整数,如[3.6]=3,[﹣3.6]=﹣4,关于函数f(x)=[ ﹣[ ]],有下列命题: ①f(x)是周期函数;
②f(x)是偶函数;
③函数f(x)的值域为{0,1};
④函数g(x)=f(x)﹣cosπx在区间(0,π)内有两个不同的零点,
其中正确的命题为(把正确答案的序号填在横线上).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=﹣x3+ax2+bx+c的导数f'(x)满足f'(﹣1)=0,f'(2)=9.
(1)求f(x)的单调区间;
(2)f(x)在区间[﹣2,2]上的最大值为20,求c的值.
(3)若函数f(x)的图象与x轴有三个交点,求c的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了培养学生的数学建模和应用能力,某校组织了一次实地测量活动,如图,假设待测量的树木 的高度 ,垂直放置的标杆 的高度 ,仰角 三点共线),试根据上述测量方案,回答如下问题:

(1)若测得 ,试求 的值;
(2)经过分析若干测得的数据后,大家一致认为适当调整标杆到树木的距离 (单位:)使 之差较大时,可以提高测量的精确度.若树木的实际高为 ,试问 为多少时, 最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线 ,方程x2+y2﹣2mx﹣2y+m+3=0表示圆.
(Ⅰ)求实数m的取值范围;
(Ⅱ)当m=﹣2时,试判断直线l与该圆的位置关系,若相交,求出相应弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知一个科研小组有4位男组员和2位女组员,其中一位男组员和一位女组员不会英语,其他组员都会英语,现在要用抽签的方法从中选出两名组员组成一个科研攻关小组.
(Ⅰ)求组成攻关小组的成员是同性的概率;
(Ⅱ)求组成攻关小组的成员中有会英语的概率;
(Ⅲ)求组成攻关小组的成员中有会英语并且是异性的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a∈R,解关于x的不等式(a﹣1)x2+(2a+3)x+a+2<0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列 的前 n 项和为 Sn ,且(3-m)Sn+2man=m+3() ,其中 m 为常数,且 .
①求证: 是等比数列;
②若数列 的公比为q=f(m) ,数列 {bn} 满足 b1=a1 ,求证: 为等差数列.

查看答案和解析>>

同步练习册答案