精英家教网 > 高中数学 > 题目详情

【题目】已知函数

(Ⅰ)在图中作出函数y =的图象,并求出其与直线围成的封闭图形的面积

(Ⅱ)若g(x)=|2x-a|+|x-1|.当+g(x)≥3对一切实数x恒成立,求实数a的范围。

【答案】(Ⅰ)图象见答案,面积为6;(Ⅱ)a≥1或a≤-5

【解析】

(Ⅰ)对函数y =进行分类讨论,得出分段函数式,然后分段作图,根据图形求出面积;

(Ⅱ)+g(x)≥3对一切实数x恒成立,即求[+g(x)]min,利用绝对值不等式的性质求解最值,得出a的范围。

(Ⅰ)

画出图象可知,

时,,最小值对应的点为

所以围成的封闭图形为三角形,底为4,高为3,所以面积.

(Ⅱ)+g(x)= |2x+2|+|2x-a|≥|2+a|

|2+a|≥3

解得:a≥1a≤-5

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数,若),,则的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆经过点,且离心率为.

(1)求椭圆的方程;

(2)若点在椭圆上,且四边形是矩形,求矩形的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-4:坐标系与参数方程]

在平面直角坐标系中,直线的参数方程为为参数,),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(Ⅰ)若,求直线的普通方程及曲线的直角坐标方程;

(Ⅱ)若直线与曲线有两个不同的交点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知长方形中,,的中点. 将沿折起,使得平面平面.

(1)求证: .

(2)点是线段上的一动点,当二面角大小为时,试确定点的位置.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分16分)

在平面直角坐标系xOy中,椭圆C:(ab0)的上顶点到焦点的距离为2,离心率为

(1)求a,b的值.

(2)设P是椭圆C长轴上的一个动点,过点P作斜率为k的直线l交椭圆C于A、B两点.

若k=1,求OAB面积的最大值;

)若PA2+PB2的值与点P的位置无关,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点恰好是椭圆的右焦点.

1)求实数的值及抛物线的准线方程;

2)过点任作两条互相垂直的直线分别交抛物线点,求两条弦的弦长之和的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,长方体ABCDA1B1C1D1中,ABAD1AA12,点PDD1的中点,点MBB1的中点.

1)求证:PB1⊥平面PAC

2)求直线CM与平面PAC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解人们对于国家新颁布的“生育二胎放开”政策的热度,现在某市进行调查,随机调查了50人,他们年龄大点频率分布及支持“生育二胎”人数如下表:

年龄

频率

5

10

15

10

5

5

支持“生育二胎”

4

5

12

8

2

1

(1)由以上统计数据填下面2乘2列联表,并问是否有99%的把握认为以45岁为分界点对“生育二胎放开”政策的支持度有差异:

(2)若对年龄在的被调查人中随机选取两人进行调查,恰好这两人都支持“生育二胎放开”的概率是多少?

参考数据: .

查看答案和解析>>

同步练习册答案