【题目】如图所示的几何体中,ABC﹣A1B1C1为三棱柱,且AA1⊥平面ABC,四边形ABCD为平行四边形,AD=2CD,∠ADC=60°.
(1)若AA1=AC,求证:AC1⊥平面A1B1CD;
(2)若CD=2,AA1=λAC,二面角A﹣C1D﹣C的余弦值为 ,求三棱锥C1﹣A1CD的体积.
【答案】
(1)证明:连接A1C交AC1于E,因为AA1=AC,又A A1⊥平面ABCD,所以AA1⊥AC,
所以A1ACC1为正方形,所以A1C⊥AC1,
在△ACD中,AD=2CD,∠ADC=60°,由余弦定理得 AC2=AD2+CD2﹣2 ACDCcos60°,
所以 ,所以AD2=AC2+CD2,
所以CD⊥AC,又AA1⊥CD.所以CD⊥平面A1ACC1,
所以CD⊥AC1,所以AC1⊥平面A1 B1CD.
(2)如图建立直角坐标系,则D(2,0,0), , , ∴ ,
对平面 AC1D,因为 ,
所以法向量 ,
平面C1CD的法向量为 ,
由 ,得λ=1,
所以 A A1=AC,此时,CD=2, ,
所以
【解析】(1)连接A1C交AC1于E,证明AA1⊥AC,CD⊥AC,推出CD⊥平面A1ACC1 , 然后证明AC1⊥平面A1 B1CD.(2)如图建立直角坐标系,求出相关点的坐标,求出平面 AC1D的法向量 ,平面C1CD的法向量为 ,通过向量的数量积求出λ=1,然后利用等体积法求解体积即可.
【考点精析】关于本题考查的直线与平面垂直的判定,需要了解一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直;注意点:a)定理中的“两条相交直线”这一条件不可忽视;b)定理体现了“直线与平面垂直”与“直线与直线垂直”互相转化的数学思想才能得出正确答案.
科目:高中数学 来源: 题型:
【题目】甲、乙两家外卖公司,其送餐员的日工资方案如下:甲公司的底薪70元,每单抽成4元;乙公司无底薪,40单以内(含40单)的部分每单抽成5元,超出40单的部分每单抽成7元,假设同一公司送餐员一天的送餐单数相同,现从两家公司各随机抽取一名送餐员,并分别记录其100天的送餐单数,得到如表频数表: 甲公司送餐员送餐单数频数表
送餐单数 | 38 | 39 | 40 | 41 | 42 |
天数 | 20 | 40 | 20 | 10 | 10 |
乙公司送餐员送餐单数频数表
送餐单数 | 38 | 39 | 40 | 41 | 42 |
天数 | 10 | 20 | 20 | 40 | 10 |
(Ⅰ)现从甲公司记录的100天中随机抽取两天,求这两天送餐单数都大于40的概率;
(Ⅱ)若将频率视为概率,回答下列问题:
(i)记乙公司送餐员日工资为X(单位:元),求X的分布列和数学期望;
(ii)小明拟到甲、乙两家公司中的一家应聘送餐员,如果仅从日工资的角度考虑,请利用所学的统计学知识为他作出选择,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某商品要了解年广告费(单位:万元)对年利润(单位:万元)的影响,对近4年的年广告费和年利润数据作了初步整理,得到下面的表格:
广告费 | 2 | 3 | 4 | 5 |
年利润 | 26 | 39 | 49 | 54 |
(Ⅰ)用广告费作解释变量,年利润作预报变量,建立关于的回归直线方程;
(Ⅱ)根据(Ⅰ)的结果预报广告费用为6万元时的年利润.
附:对于一组数据,,…,,其回归直线的斜率和截距的最小二乘估计分别为:,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知F2、F1是双曲线 =1(a>0,b>0)的上、下焦点,点F2关于渐近线的对称点恰好落在以F1为圆心,|OF1|为半径的圆上,则双曲线的离心率为( )
A.3
B.
C.2
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,直线的参数方程为为参数),若以原点为极点,轴正半轴为极轴建立极坐标系,已知圆的极坐标方程为,设是圆上任一点,连结并延长到,使.
(1)求点轨迹的直角坐标方程;
(2)若直线与点轨迹相交于两点,点的直角坐标为,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数恒过定点.
(1)求实数.
(2)在(1)的条件下,将函数的图象向下平移个单位,再向左平移个单位后得到函数,设函数的反函数为,求的解析式.
(3)对于定义在上的函数,若在其定义域内,不等式恒成立,求的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com