分析 (1)由题意,借助于点到直线的距离公式列关于a,c的方程组,求得a,c的值,结合隐含条件求得b,则椭圆方程可求;
(2)写出直线l的方程,与椭圆方程联立求得A,B的坐标,结合$\overrightarrow{OA}$+$\overrightarrow{OD}$=$\overrightarrow{BO}$求出D的坐标,再由对称性求得E的坐标,然后求出AB、DE的垂直平分线方程,联立求出交点M的坐标,再由|MA|=|MD|说明A,B,D,E四点共圆,并求得圆的标准方程.
解答 解:(1)由题意可得$\left\{\begin{array}{l}{\frac{c}{a}=\frac{\sqrt{2}}{2}}\\{\frac{2}{\sqrt{2}}=a}\end{array}\right.$,∴a=$\sqrt{2}$,c=1.
则b2=a2-c2=1.
∴椭圆C的标准方程为$\frac{{x}^{2}}{2}+{y}^{2}=1$;
(2)由题意可知直线l的方程为$y=-\frac{\sqrt{2}}{2}(x-1)$,
联立$\left\{\begin{array}{l}{y=-\frac{\sqrt{2}}{2}(x-1)}\\{\frac{{x}^{2}}{2}+{y}^{2}=1}\end{array}\right.$,得2x2-2x-1=0.
解得:$\left\{\begin{array}{l}{{x}_{1}=\frac{1-\sqrt{3}}{2}}\\{{y}_{1}=\frac{\sqrt{6}+\sqrt{2}}{4}}\end{array}\right.$,$\left\{\begin{array}{l}{{x}_{2}=\frac{1+\sqrt{3}}{2}}\\{{y}_{2}=\frac{\sqrt{2}-\sqrt{6}}{4}}\end{array}\right.$.
不妨设A($\frac{1-\sqrt{3}}{2},\frac{\sqrt{6}+\sqrt{2}}{4}$),B($\frac{1+\sqrt{3}}{2},\frac{\sqrt{2}-\sqrt{6}}{4}$),
再设D(x0,y0),
由$\overrightarrow{OA}$+$\overrightarrow{OD}$=$\overrightarrow{BO}$,得$(\frac{1-\sqrt{3}}{2}+{x}_{0},\frac{\sqrt{6}+\sqrt{2}}{4}+{y}_{0})$=$(-\frac{1+\sqrt{3}}{2},\frac{\sqrt{6}-\sqrt{2}}{4})$.
∴${x}_{0}=-1,{y}_{0}=-\frac{\sqrt{2}}{2}$,即D(-1,-$\frac{\sqrt{2}}{2}$),则E(1,$\frac{\sqrt{2}}{2}$),
AB的中点坐标为($\frac{1}{2}$,$\frac{\sqrt{2}}{4}$),${k}_{AB}=\frac{\frac{\sqrt{2}-\sqrt{6}}{4}-\frac{\sqrt{6}+\sqrt{2}}{4}}{\frac{1+\sqrt{3}}{2}-\frac{1-\sqrt{3}}{2}}$=$-\frac{\sqrt{2}}{2}$.
AB的垂直平分线方程为$y-\frac{\sqrt{2}}{4}=\sqrt{2}(x-\frac{1}{2})$,即$y=\sqrt{2}x-\frac{\sqrt{2}}{4}$;
DE的中点坐标(0,0),${k}_{DE}=\frac{\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}}{2}=\frac{\sqrt{2}}{2}$.
DE的垂直平分线方程为y=-$\sqrt{2}x$.
联立$\left\{\begin{array}{l}{y=-\sqrt{2}x}\\{y=\sqrt{2}x-\frac{\sqrt{2}}{4}}\end{array}\right.$,解得:$x=\frac{1}{8},y=-\frac{\sqrt{2}}{8}$.
∴两直线交点坐标为M($\frac{1}{8},-\frac{\sqrt{2}}{8}$).
∵|MA|=$\sqrt{(\frac{1-\sqrt{3}}{2}-\frac{1}{8})^{2}+(\frac{\sqrt{6}+\sqrt{2}}{4}+\frac{\sqrt{2}}{8})^{2}}$=$\frac{\sqrt{99}}{8}$.
|MD|=$\sqrt{(\frac{1}{8}+1)^{2}+(-\frac{\sqrt{2}}{8}+\frac{\sqrt{2}}{2})^{2}}$=$\frac{\sqrt{99}}{8}$.
∴A,B,D,E四点共圆,圆的标准方程为$(x-\frac{1}{8})^{2}+(y+\frac{\sqrt{2}}{8})^{2}=\frac{99}{64}$.
点评 本题考查椭圆的简单性质,考查了直线与圆锥曲线的位置关系的应用,训练了利用向量法求解直线与圆锥曲线的位置关系问题,考查计算能力,是中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com