精英家教网 > 高中数学 > 题目详情
5.数列{an}的前n项和为Sn,且满足S1=2,Sn+1=3Sn+2.
(1)求数列{an}的通项公式an
(2)设${b_1}=\frac{1}{2},{b_n}=\frac{a_n}{{{S_{n-1}}•{S_n}}}(n≥2)$,求证:b1+b2+…+bn<1.

分析 (Ⅰ)由Sn+1=3Sn+2,变形Sn+1+1=3(Sn+1). 利用等比数列的通项公式、递推关系即可得出.
(Ⅱ)由${b_n}=\frac{{2×{3^{n-1}}}}{{({3^{n-1}}-1)({3^n}-1)}}=\frac{1}{{{3^{n-1}}-1}}-\frac{1}{{{3^n}-1}},({n>1})$,利用“裂项求和”即可得出.

解答 (Ⅰ)解:∵Sn+1=3Sn+2,
∴Sn+1+1=3(Sn+1). 
又∵S1+1=3,
∴{Sn+1}是首项为3,公比为3的等比数列,
∴${S_n}={3^n}-1,n∈{N^*}$. 
n=1时,a1=S1=2,
n>1时,${a_n}={S_n}-{S_{n-1}}=({3^n}-1)-({3^{n-1}}-1)$=3n-1(3-1)=2×3n-1
故${a_n}=2×{3^{n-1}},n∈{N^*}$.
(Ⅱ)证明:∵${b_n}=\frac{{2×{3^{n-1}}}}{{({3^{n-1}}-1)({3^n}-1)}}=\frac{1}{{{3^{n-1}}-1}}-\frac{1}{{{3^n}-1}},({n>1})$,
∴${b_1}+{b_2}+…+{b_n}=\frac{1}{2}+(\frac{1}{{{3^1}-1}}-\frac{1}{{{3^2}-1}})+(\frac{1}{{{3^2}-1}}-\frac{1}{{{3^3}-1}})+…+(\frac{1}{{{3^{n-1}}-1}}-\frac{1}{{{3^n}-1}})$
=$\frac{1}{2}+\frac{1}{2}-\frac{1}{{{3^n}-1}}<1$.

点评 本题考查了“裂项求和”、等比数列的通项公式、递推关系的应用,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.设f(x)=$\frac{{-{2^x}+m}}{{{2^{x+1}}+n}}$(m>0,n>0).
(1)若f(x)是奇函数,求m与n的值;
(2)在(1)的条件下,求不等式$f[{f(x)}]+f(\frac{1}{4})<0$的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.某班的课桌分4个大组摆放,每大组课桌数相同,甲、乙均为该班学生,则甲、乙两人的课桌在同一大组的概率是(  )
A.$\frac{1}{2}$B.$\frac{3}{4}$C.$\frac{1}{4}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.某果园现有100棵果树,平均每一棵树结600个果子.根据经验估计,每多种一棵树,平均每棵树就会少结5个果子.设果园增种x棵果树,果园果子总个数为y个,则果园里增种10棵果树,果子总个数最多.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.直棱柱ABC-A1B1C1中,∠ACB=90°,AB=2,AC=1,AA1=3,求:三棱锥B1一ABC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆F的方程是$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),它的长轴是短轴的2倍,短轴长和抛物线y2=4x的焦准距相等,在椭圆F上任意取一点P作PQ⊥x轴,垂足是Q,点C在QP的延长线上,且$\overrightarrow{QC}$=2$\overrightarrow{QP}$.
(1)求动点C的轨迹方程E;
(2)若椭圆F的左右顶点是A,B,直线AC(C和A,B不重合)与直线x-2=0交于点R,D为线段BR的中点,判断直线CD与曲线E的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.游客从某旅游景区的景点A处至景点C处有两条线路,线路1是从A沿直线步行到C,线路2是先从A沿直线步行到景点B处,然后从B沿直线步行道C,现有甲乙两位游客从A处同时出发匀速步行,甲的速度是乙的速度的$\frac{11}{9}$倍,甲走线路2,乙走线路1,最后他们同时到达C处,经测量,AB=1040m,BC=500m,则sin∠BAC等于(  )
A.$\frac{5}{13}$B.$\frac{3}{5}$C.$\frac{3}{8}$D.$\frac{7}{24}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设f(x)=$\frac{1}{2}$x2-2x,g(x)=logax(a>0,a≠1),若h(x)=f(x)+g(x)(0,+∞)上增函数,且h′(x)存在零点.
(1)求a的值;
(2)设A(x1,y1),B(x2,x2)(x1<x2)为y=g(x)的图象上的两点,且g′(x0)=$\frac{{y}_{2}-{y}_{1}}{{x}_{2}-{x}_{1}}$,求证:x0∈(x1,x2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.f(x)是定义在(-1,1)上的增函数,且f(x)+f(-x)=0,若f(1-a)+f(1-a2)>0,则a∈(0,1).

查看答案和解析>>

同步练习册答案