精英家教网 > 高中数学 > 题目详情

(本小题共13分)已知函数,其中

(Ⅰ)求证:函数在区间上是增函数;

(Ⅱ)若函数处取得最大值,求.

 

【答案】

证明:(Ⅰ)

因为,所以

所以函数在区间上是增函数.                  …………6分

(Ⅱ)由题意.

.    …………8分

,即. ①

由于 ,可设方程①的两个根为

由①得

由于所以,不妨设

时,为极小值,

所以在区间上,处取得最大值;

时,由于在区间上是单调递减函数,所以最大值为

综上,函数只能在处取得最大值.      …………10分

又已知处取得最大值,所以

,解得,又因为

所以].                                      ………13分

【解析】本题考查函数的最值、极值和函数的单调区间,考查学生利用导数法求解函数性质的解题能力。解题时须注意求导的准确性和明确函数的定义域;求解函数的最值,一般思路是明确函数的定义域,利用求导判断函数的单调性,然后再给定的区间上判断函数的最值。本题的第一问按照函数递增的等价性进行证明;第二问中利用函数的最值情形,根据分类讨论思想讨论的取值范围.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(本小题共13分)

已知函数的反函数为,数列满足:

函数的图象在点处的切线在轴上的截距为

(1)求数列{}的通项公式;

(2)若数列的项仅最小,求的取值范围;

(3)令函数,数列满足:,且

,其中.证明:

查看答案和解析>>

科目:高中数学 来源:2011年普通高中招生考试北京市高考理科数学 题型:解答题

(本小题共13分)
已知函数
(Ⅰ)求的最小正周期:
(Ⅱ)求在区间上的最大值和最小值。

查看答案和解析>>

科目:高中数学 来源:2011年普通高中招生考试北京市高考理科数学 题型:解答题

(本小题共13分)

已知函数

(Ⅰ)求的单调区间;

(Ⅱ)若对于任意的,都有,求的取值范围。

 

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年北京市海淀区高三下学期期中考试数学理卷 题型:解答题

(本小题共13分)

已知每项均是正整数的数列,其中等于的项有

  .

(Ⅰ)设数列,求

(Ⅱ)若数列满足,求函数的最小值.

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年北京市丰台区高三下学期统一练习数学理卷 题型:解答题

(本小题共13分)

已知函数为函数的导函数.

(Ⅰ)设函数f(x)的图象与x轴交点为A,曲线y=f(x)在A点处的切线方程是,求的值;

(Ⅱ)若函数,求函数的单调区间.

 

查看答案和解析>>

同步练习册答案