精英家教网 > 高中数学 > 题目详情
6.已知圆(x-1)2+y2=4与抛物线y2=2px(p>0)的准线相切,则p=2.

分析 根据圆(x-1)2+y2=4与抛物线y2=2px(p>0)的准线相切,可以得到圆心到准线的距离等于半径从而得到p的值.

解答 解:∵圆(x-1)2+y2=4与抛物线y2=2px(p>0)的准线相切,抛物线y2=2px(p>0)的准线为x=-$\frac{p}{2}$,
∴1+$\frac{p}{2}$=2,解得p=2.
故答案为:2.

点评 本题考查抛物线的相关几何性质及直线与圆的位置关系,理解直线与圆相切时圆心到直线的距离等于半径是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.计算:${log_2}sin{15^0}-{log_{\frac{1}{2}}}sin{75^0}$=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.复数i(3+4i)=(  )
A.-4+3iB.4+3iC.3-4iD.3+4i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设等比数列{an}的各项均为正数,其前Sn项和为a1=1,a3=4,则an=2n-1;S6=63.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知双曲线x2-$\frac{{y}^{2}}{{b}^{2}}$=1(b>0)的一个焦点是(2,0),则其渐近线的方程为(  )
A.x±$\sqrt{3}$y=0B.$\sqrt{3}$x±y=0C.x±3y=0D.3x±y=0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.根据如图所示的伪代码可知,输出的结果为70.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设P为有公共焦点F1,F2的椭圆C1与双曲线C2的一个交点,且PF1⊥PF2,椭圆C1的离心率为e1,双曲线C2的离心率为e2,若3e1=e2,则e1=$\frac{\sqrt{5}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+2x+3,x>-1}\\{{2}^{x+1}-1,x≤-1}\end{array}\right.$,已知f(a)=3,则a的值是(  )
A.0B.-2C.0或-2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.某几何体的三视图如图所示,则该几何体的体积是$\frac{32}{3}$.

查看答案和解析>>

同步练习册答案