【题目】如图,已知点,点均在圆上,且,过点作的平行线分别交,于两点.
(1)求点的轨迹方程;
(2)过点的动直线与点的轨迹交于两点.问是否存在常数,使得点为定值?若存在,求出的值;若不存在,说明理由.
【答案】(1);(2)存在常数符合题意,理由详见解析.
【解析】
(1)由平面几何的相关性质可得,则,即点的轨迹是以为焦点的椭圆,再求出椭圆的标准方程即可;
(2)当直线的斜率存在时,设,,,联立直线方程与椭圆方程,消元列出韦达定理,则代入计算可得的值,再计算斜率不存在时的值,即可得解;
解:(1)由,得,
由,得,所以.
由,知,
所以,即,
所以,
所以点的轨迹是以为焦点的椭圆.
这里,,所以,,
则点的轨迹方程为:.
(2)当直线与轴不垂直时,设,,,
联立得,
其判别式,
所以,,
,
所以当时,,
此时为定值.
当直线的斜率不存在时,.
综上,存在常数,使得为定值img src="http://thumb.zyjl.cn/questionBank/Upload/2020/11/26/22/0c62e4d8/SYS202011262207475451781454_DA/SYS202011262207475451781454_DA.037.png" width="22" height="19" style="-aw-left-pos:0pt; -aw-rel-hpos:column; -aw-rel-vpos:paragraph; -aw-top-pos:0pt; -aw-wrap-type:inline" />.
科目:高中数学 来源: 题型:
【题目】已知斜率为1的直线与椭圆交于,两点,且线段的中点为,椭圆的上顶点为.
(1)求椭圆的离心率;
(2)设直线与椭圆交于两点,若直线与的斜率之和为2,证明:过定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点为抛物线的焦点,点在抛物线上,过点的直线交抛物线于两点,线段的中点为,且满足.
(1)若直线的斜率为1,求点的坐标;
(2)若,求四边形面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲和乙两个人计划周末参加志愿者活动,约定在周日早上8:00至8:30之间到某公交站搭乘公交车一起去,已知在这段时间内,共有班公交车到达该站,到站的时间分别为8:05,8:15,8:30,如果他们约定见车就搭乘,则甲和乙两个人恰好能搭乘同一班公交车去的概率为( )
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左、右焦点,,是椭圆上的动点,且面积的最大值为.
(1)求椭圆的方程及离心率;
(2)若是椭圆的左、右顶点,直线与椭圆在点处的切线交于点,当点在椭圆上运动时,求证:以为直径的圆与直线恒相切.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,为坐标原点,椭圆的左,右焦点分别为,离心率为,双曲线的左,右焦点分别为,,离心率为,已知,.
(1)求,的方程;
(2)过作的不垂直于轴的弦,为弦的中点,当直线与交于,两点时,求四边形面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:的两个焦点为,,焦距为,直线:与椭圆相交于,两点,为弦的中点.
(1)求椭圆的标准方程;
(2)若直线:与椭圆相交于不同的两点,,,若(为坐标原点),求的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com