分析 (1)证明DC1⊥面BCD,即可证明DC1⊥BC;
(2)过C作CE⊥BD,则CE⊥面BC1D,CE为点C到平面BDC1的距离,利用等面积求点C到平面BDC1的距离.
解答 (1)证明:在Rt△DAC中,AD=AC,∴∠ADC=45°
同理:∠A1DC1=45°,∴∠CDC1=90°
∴DC1⊥DC,DC1⊥BD
∵DC∩BD=D
∴DC1⊥面BCD
∵BC?面BCD
∴DC1⊥BC;
(2)解:∵DC1⊥面BCD,DC1?面BC1D
∴面BC1D⊥面BCD,
过C作CE⊥BD,则CE⊥面BC1D,CE为点C到平面BDC1的距离.
△BCD中,BC=1,CD=$\sqrt{2}$,BD=$\sqrt{3}$,BC⊥CD,S△BCD=$\frac{\sqrt{2}}{2}$,
∴$\frac{1}{2}×\sqrt{3}h$=$\frac{\sqrt{2}}{2}$,
∴h=$\frac{\sqrt{6}}{3}$.
点评 本题考查线面垂直的判定与性质,考查点到平面距离的计算,考查学生分析解决问题的能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | ($\sqrt{3}$,+∞) | B. | (1,$\sqrt{3}$) | C. | (1,$\sqrt{2}$) | D. | ($\sqrt{2}$,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{5}$ | B. | $\frac{2}{5}$ | C. | $\frac{3}{5}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com