精英家教网 > 高中数学 > 题目详情
已知直线交抛物线两点,则△(     )
A.为直角三角形B.为锐角三角形
C.为钝角三角形D.前三种形状都有可能
A

试题分析:因为直线与抛物线交于两点,联立得:,设所以
因为,所以,即为直角三角形。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,设F(-c,0)是椭圆的左焦点,直线l:x=-与x轴交于P点,MN为椭圆的长轴,已知|MN|=8,且|PM|=2|MF|。

(Ⅰ)求椭圆的标准方程;
(Ⅱ)过点P的直线m与椭圆相交于不同的两点A,B。
①证明:∠AFM=∠BFN;
②求△ABF面积的最大值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(13分) 已知椭圆C的中心在原点,离心率等于,它的一个短轴端点点恰好是抛物线 的焦点。

(1)求椭圆C的方程;
(2)已知P(2,3)、Q(2,-3)是椭圆上的两点,A,B是椭圆上位于直线PQ两侧的动点,
①若直线AB的斜率为,求四边形APBQ面积的最大值;
②当A、B运动时,满足,试问直线AB的斜率是否为定值,请说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆.

(1)椭圆的短轴端点分别为(如图),直线分别与椭圆交于两点,其中点满足,且.
①证明直线轴交点的位置与无关;
②若∆面积是∆面积的5倍,求的值;
(2)若圆:.是过点的两条互相垂直的直线,其中交圆两点,交椭圆于另一点.求面积取最大值时直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的离心率为,其中左焦点(-2,0).
(1) 求椭圆C的方程;
(2) 若直线y=x+m与椭圆C交于不同的两点A,B,且线段AB的中点M在圆x2+y2=1上,求m的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知两点,点在以为焦点的椭圆上,且构成等差数列.
(Ⅰ)求椭圆的方程;
(Ⅱ)如图,动直线与椭圆有且仅有一个公共点,点是直线上的两点,且. 求四边形面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知曲线上任意一点到直线的距离是它到点距离的倍;曲线是以原点为顶点,为焦点的抛物线.
(Ⅰ)求,的方程;
(Ⅱ)过作两条互相垂直的直线,其中相交于点,相交于点,求四边形面积的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

正方体中,为侧面所在平面上的一个动点,且到平面的距离是到直线距离的倍,则动点的轨迹为(   )
A.椭圆B.双曲线C.抛物线D.圆

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆内的一点,过点P的弦恰好以P为中点,那么这弦所在的直线方程(   )
A.B.
C.D.

查看答案和解析>>

同步练习册答案