精英家教网 > 高中数学 > 题目详情
如图,F1F2分别是椭圆C=1(ab>0)的左、右焦点,A是椭圆C的顶点,B是直线AF2与椭圆C的另一个交点,∠F1AF2=60°.

(1)求椭圆C的离心率;
(2)已知△AF1B的面积为40,求ab的值.
(1)e.(2)a=10,b=5
(1)由题意可知,△AF1F2为等边三角形,a=2c,所以e.
(2)方法一:a2=4c2b2=3c2,直线AB的方程为y=- (xc),
将其代入椭圆方程3x2+4y2=12c2,得B
所以|AB|=..
SAF1B |AF1|·|AB|·sin∠F1ABa·c· a2=40
解得a=10,b=5.
方法二:设|AB|=t.因为|AF2|=a,所以|BF2|=ta
由椭圆定义|BF1|+|BF2|=2a可知,|BF1|=3at
再由余弦定理(3at)2a2t2-2atcos 60°可得,ta
SAF1Baaa2=40知,a=10,b=5.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知定点A(-2,0)和B(2,0),曲线E上任一点P满足|PA|-|PB|=2.
(1)求曲线E的方程;
(2)延长PB与曲线E交于另一点Q,求|PQ|的最小值;
(3)若直线l的方程为x=a(a≤),延长PB与曲线E交于另一点Q,如果存在某一位置,使得从PQ的中点R向l作垂线,垂足为C,满足PC⊥QC,求a的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

AB分别是直线yxy=-x上的动点,且|AB|=,设O为坐标原点,动点P满足.
(1)求点P的轨迹方程;
(2)过点(,0)作两条互相垂直的直线l1l2,直线l1l2与点P的轨迹的相交弦分别为CDEF,设CDEF的弦中点分别为MN,求证:直线MN恒过一个定点.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

椭圆的离心率为,且经过点过坐标原点的直线均不在坐标轴上,与椭圆M交于A、C两点,直线与椭圆M交于B、D两点
(1)求椭圆M的方程;
(2)若平行四边形ABCD为菱形,求菱形ABCD的面积的最小值

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设椭圆的方程为 ,斜率为1的直线不经过原点,而且与椭圆相交于两点,为线段的中点.
(1)问:直线能否垂直?若能,求之间满足的关系式;若不能,说明理由;
(2)已知的中点,且点在椭圆上.若,求之间满足的关系式.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知中心在原点的椭圆C: 的一个焦点为为椭圆C上一点,△MOF2的面积为.
(1)求椭圆C的方程;
(2)是否存在平行于OM的直线l,使得l与椭圆C相交于A、B两点,且以线段AB为直径的圆恰好过原点?若存在,求出直线l的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知点,直线上有两个动点,始终使,三角形的外心轨迹为曲线为曲线在一象限内的动点,设,则(    )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

坐标平面上有两个定点A,B和动点P,如果直线PA,PB的斜率之积为定值m,则点P的轨迹可能是:①椭圆;②双曲线;③抛物线;④圆;⑤直线.试将正确的序号填在横线上:         .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知直线lyx,圆Ox2y2=5,椭圆E=1(a>b>0)的离心率e,直线l被圆O截得的弦长与椭圆的短轴长相等.
(1)求椭圆E的方程;
(2)过圆O上任意一点P作椭圆E的两条切线,若切线都存在斜率,求证:两条切线的斜率之积为定值.

查看答案和解析>>

同步练习册答案