精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥中,平面平面ABCD,底面ABCD是直角梯形,OAD的中点.

1)在线段PA上找一点E,使得平面PCD,并证明;

2)在(1)的条件下,若,求平面OBE与平面POC所成的锐二面角的余弦值.

【答案】(1)E是线段PA的中点,证明详见解析;(2).

【解析】

1是线段的中点;连接,证明平面平面后即可得证;

2)建立空间直角坐标系,表示出的坐标后,分别求出平面的一个法向量与平面的一个法向量,利用即可得解.

1是线段的中点,

证明:连接

的中点,

平面平面

平面

底面是直角梯形,

平面平面

平面

平面平面

平面平面

平面

平面.

2平面平面

平面,且

为原点,如图建立空间直角坐标系

是平面的一个法向量,

,得,取

又易知是平面的一个法向量,

设平面与平面所成的锐二面角为

即平面与平面所成的锐二面角的余弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

1)求函数的单调区间;

2)若函数取得极小值,若,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有下列四个命题:(1)一定存在直线,使函数的图像与函数的图像关于直线对称;(2)不等式:的解集为;(3)已知数列的前项和为,则数列一定是等比数列;(4)过抛物线上的任意一点的切线方程一定可以表示为.则正确命题的序号为_________________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在多面体中,是等边三角形,是等腰直角三角形, ,平面平面平面.

(1) 求证:

(2) 若,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某销售公司在当地两家超市各有一个销售点,每日从同一家食品厂一次性购进一种食品,每件200元,统一零售价每件300元,两家超市之间调配食品不计费用,若进货不足食品厂以每件250元补货,若销售有剩余食品厂以每件150回收.现需决策每日购进食品数量,为此搜集并整理了两家超市往年同期各50天的该食品销售记录,得到如下数据:

销售件数

8

9

10

11

频数

20

40

20

20

以这些数据的频数代替两家超市的食品销售件数的概率,记表示这两家超市每日共销售食品件数,表示销售公司每日共需购进食品的件数.

(1)求的分布列;

(2)以销售食品利润的期望为决策依据,在之中选其一,应选哪个?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】由于受到网络电商的冲击,某品牌的洗衣机在线下的销售受到影响,承受了一定的经济损失,现将地区200家实体店该品牌洗衣机的月经济损失统计如图所示.

1)求的值;

2)求地区200家实体店该品牌洗衣机的月经济损失的众数以及中位数;

3)不经过计算,直接给出地区200家实体店经济损失的平均数6000的大小关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1),求函数的单调区间;

(2)恒成立,的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司欲对员工饮食习惯进行一次调查,从某科室的100人中的饮食结构调查结果统计如下表.

主食蔬菜

主食肉类

总计

不超过45

15

40

45岁以上

20

总计

1)完成列联表,并判断能否有99%的把握认为员工的饮食习惯与年龄有关?

2)在45岁以上员工中按照饮食习惯进行分层抽样抽出一个容量为6的样本,从这6个人中随机抽取3个人,求这3个人都主食蔬菜的概率.

附:

0.050

0.010

0.001

3.841

6.635

10.828

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设命题p:实数x满足x24ax+3a20a0),命题q:实数x满足x25x+60

1)若a1,且pq为真命题,求实数x的取值范围;

2)若pq的必要不充分条件,求实数a的取值范围.

查看答案和解析>>

同步练习册答案