精英家教网 > 高中数学 > 题目详情

【题目】已知函数,其中a∈R.

Ⅰ)a1时,判断fx)的单调性;

Ⅱ)gx)在其定义域内为增函数,求正实数a的取值范围

【答案】1在()上单调递增;(2.

【解析】试题分析:()求函数导数并确定导函数符号:,即得函数在定义域上单调递增(gx)在其定义域内为增函数,等价于g′x≥0恒成立,再利用变量分离法将其转化为对应函数最值:的最大值,最后利用基本不等式求最大值得正实数a的取值范围

试题解析:(1)由得定义域为(0,+),

a1时,fx)在(0,+)上单调递增.………5

2)由已知得,

因为gx)在其定义域内为增函数,所以x∈0,+),

g′x≥0,即ax25xa≥0,即

,当且仅当x1时,等号成立,

所以a≥.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= (a<0).

(1)当a=-1时,求函数f(x)的极值;

(2)若函数F(x)=f(x)+1没有零点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】小明设置的手机开机密码若连续3次输入错误,则手机被锁定5分钟后,方可重新输入

某日,小明忘记了开机密码,但可以确定正确的密码是他常用的4个密码之一,于是,他

决定逐个(不重复)进行尝试

1)求手机被锁定的概率;

2)设第次输入后能成功开机,求的分布列和数学期望

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)x2ex (x0)g(x)x2ln(xa)图象上存在关于y轴对称的点a的取值范围是(  )

A. () B. ()

C. ( ) D. ( )

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知m0p(x2)(x6)0q2mx2m.

(1)pq成立的必要不充分条件求实数m的取值范围;

(2) 成立的充分不必要条件求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正四棱锥SABCD中,SAAB=2,EFG分别为BCSCCD的中点.设P为线段FG上任意一点.

(1)求证:EPAC

(2)当P为线段FG的中点时,求直线BP与平面EFG所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥的底面是平行四边形,侧面是边长为2的正三角形, , .

(Ⅰ)求证:平面平面

(Ⅱ)设是棱上的点,当平面时,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)过原点作曲线的切线,求直线的方程;

(Ⅱ)个零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的几何体中,四边形是等腰梯形, 平面

(1)求证: 平面

(2)求直线与平面所成角的余弦值.

查看答案和解析>>

同步练习册答案