精英家教网 > 高中数学 > 题目详情
9.一个盒子中放有大小相同的6个小球,其中白球4个,红球2个.任取两次,每次取一个球,每次取后不放回,已知第一次取到的是白球,则第二次也取到的是白球的概率为(  )
A.$\frac{3}{5}$B.$\frac{5}{12}$C.$\frac{2}{3}$D.$\frac{7}{9}$

分析 设已知第一次取出的是白球为事件A,第二次也取到白球为事件B,先求出P(AB)的概率,然后利用条件概率公式进行计算即可.

解答 解:设已知第一次取出的是白球为事件A,第二次也取到白球为事件B.
则由题意知,P(A)=$\frac{4}{6}$=$\frac{2}{3}$,P(AB)=$\frac{4×3}{6×5}$=$\frac{2}{5}$,
所以已知第一次取出的是白球,则第二次也取到白球的概率为P(B|A)=$\frac{\frac{2}{5}}{\frac{2}{3}}$=$\frac{3}{5}$.
故选:A.

点评 本题主要考查条件概率的求法,熟练掌握条件概率的概率公式是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.某个游戏中,一个珠子按如图所示的通道,由上至下的滑下,从最下面的六个出口出来,规定猜中者为胜,如果某人在该游戏中,猜得珠子从3号口出来,那么他取胜的概率为$\frac{5}{16}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设全集U=N,集合A={x∈N|x2-6x+5≤0},B={2,3,4},则A∩(∁UB)=(  )
A.{1,3,5}B.{1,2,4,5}C.{1,5}D.{2,4}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知角α的终边上一点P的坐标为(sin$\frac{2π}{3}$,cos$\frac{2π}{3}$),则sinα的值为(  )
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$-\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知角α∈($\frac{π}{2},\frac{3π}{2}$),且tanα=-$\frac{12}{5}$,则cos(2π-α)=$-\frac{5}{13}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在2-$\sqrt{3}$与2+$\sqrt{3}$之间插入一个数,使这三个数成等比数列,则这个数为(  )
A.±$\sqrt{2}$B.±1C.1D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知数列{an}满足:a1=-1,$\frac{{{a_{n+1}}}}{a_n}=\frac{1}{2}$,则数列{an}是(  )
A.递增数列B.递减数列C.摆动数列D.不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.曲线的参数方程为$\left\{\begin{array}{l}{x=3{t}^{2}+2}\\{y={t}^{2}-1}\end{array}\right.$(t是参数),则曲线是(  )
A.线段B.直线C.D.射线

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.非零向量$\overrightarrow a$,$\overrightarrow b$满足:($\overrightarrow a$+$\overrightarrow b$)⊥$\overrightarrow a$,(2$\overrightarrow a$+$\overrightarrow b$)⊥$\overrightarrow b$,则$\overrightarrow a$与$\overrightarrow b$的夹角<$\overrightarrow a$,$\overrightarrow b$>=(  )
A.$\frac{π}{4}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{3π}{4}$

查看答案和解析>>

同步练习册答案