精英家教网 > 高中数学 > 题目详情

【题目】设函数.

1)讨论上的单调性;

2)证明:上有三个零点.

【答案】(1)的单调递减区间为;单调递增区间为.(2)证明见解析

【解析】

1)利用导数的正负可求函数的单调区间.

2)结合函数的单调性和零点存在定理可证明上有3个零点,再构建新函数可证明上没有零点.

1

,得.

变化时,的变化情况如下表:

0

0

0

0

极小值

极大值

极小值

所以的单调递减区间为

的单调递增区间为.

2)当时,由(1)得,

的极小值分别为

极大值.

所以上仅有一个零点0

上各有一个零点.

时,

,则

显然时,单调递增,

时,

从而时,单调递减,

因此,即

所以上没有零点.

时,

,则

显然时,

时,

从而时,单调递增,

因此,即

所以上没有零点.

上仅有三个零点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在斜三棱柱中,,侧面是边长为4的菱形,分别为的中点.

1)求证:平面

2)若,求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】国家大力提倡科技创新,某工厂为提升甲产品的市场竞争力,对生产技术进行创新改造,使甲产品的生产节能降耗.以下表格提供了节能降耗后甲产品的生产产量()与相应的生产能耗()的几组对照数据.

(吨)

(吨)

1)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程

2)已知该厂技术改造前生产吨甲产品的生产能耗为吨,试根据(1)求出的线性回归方程,预测节能降耗后生产吨甲产品的生产能耗比技术改造前降低多少吨?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知非空集合是由一些函数组成,满足如下性质:对任意均存在反函数,且对任意,方程均有解;对任意,若函数为定义在上的一次函数,则.

1)若,均在集合中,求证:函数

2)若函数)在集合中,求实数的取值范围;

3)若集合中的函数均为定义在上的一次函数,求证:存在一个实数,使得对一切,均有.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,椭圆)的短轴长等于圆半径的倍,的离心率为

1)求的方程;

2)若直线交于两点,且与圆相切,证明:为直角三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】 已知抛物线的顶点为坐标原点,焦点轴的正半轴上,过点的直线与抛物线相交于两点,且满足

(1)求抛物线的方程;

(2)若是抛物线上的动点,点轴上,圆内切于,求面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】正数数列满足:,且对一切k≥2k的等差中项,的等比中项.

1)若,求的值;

2)求证:是等差数列的充要条件是为常数数列;

3)记,当n≥2(n)时,指出的大小关系并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】mn是两条不同直线,αβγ是三个不同平面,给出下列四个命题:

①若mαnα,则mn;②若αββγmα,则mγ

③若mαnα,则mn;④若mαmβ,则αβ

其中正确命题的个数是(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(其中为自然对数的底数).

1)求的单调性;

2)若,对于任意,是否存在与有关的正常数,使得成立?如果存在,求出一个符合条件的;否则说明理由.

查看答案和解析>>

同步练习册答案