精英家教网 > 高中数学 > 题目详情
已知命题p:函数y=xm在(0,+∞)为减函数命题q:复数z=m2-5m-6+(m-2)i,(m∈R)在复平面内的对应点在第三象限.
如果p或q为真命题,p且q为假命题,求m的取值范围.
分析:根据幂函数的单调性求出p为真命题时m的范围,由复数的集合意义求出q为真命题时m的范围,再由复合命题的真假性求出m的范围.
解答:解:∵函数y=xm在(0,+∞)为减函数,∴m<0,
∵复数z=m2-5m-6+(m-2)i,(m∈R)在复平面内的对应点在第三象限,
m2-5m-6<0
m-2<0
,解得,-1<m<2,
则p为真命题时,m<0;q为真命题时,-1<m<2,
∵p或q为真命题,p且q为假命题,
∴p为真命题且q为假命题;或p为假命题且q为真命题,
∴m的取值范围:m≤-1或0≤m<2.
点评:本题是有关命题的综合题,涉及了幂函数的单调性,复数的几何意义,复合命题的真假性,必须对数学基础知识掌握好.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知命题p:函数y=lgx2的定义域是R,命题q:函数y=(
13
)
x
的值域是正实数集,给出命题:①p或q;②p且q;③非p;④非q.其中真命题个数为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:函数y=x2+2(a2-a)x+a4-2a3在[-2,+∞)上单调递增.q:关于x的不等式ax2-ax+1>0解集为R.若p∧q假,p∨q真,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题P:函数y=loga(1-2x)在定义域上单调递增,命题Q:不等式(a-2)x2+2(a-2)x-4<0对任意实数x恒成立,若P∨Q是真命题,P∧Q是假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:函数y=log 0.5(x2+2x+a)的值域为R,命题q:函数y=(x-a)2在(2,+∞)上是增函数.若p或q为真命题,p且q为假命题,则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题P:函数y=lg(ax2-x+
a16
)定义域为R; 命题Q:函数y=(5-2a)x为增函数;若“p∨q”为真命题,“p∧q:”为假命题,求实数a的取值范围.

查看答案和解析>>

同步练习册答案