精英家教网 > 高中数学 > 题目详情

【题目】某商品要了解年广告费(单位:万元)对年利润(单位:万元)的影响,对近4年的年广告费和年利润数据作了初步整理,得到下面的表格:

广告费

2

3

4

5

年利润

26

39

49

54

(Ⅰ)用广告费作解释变量,年利润作预报变量,建立关于的回归直线方程;

(Ⅱ)根据(Ⅰ)的结果预报广告费用为6万元时的年利润.

附:对于一组数据,…,,其回归直线的斜率和截距的最小二乘估计分别为:.

【答案】(Ⅰ)(Ⅱ)时,万元

【解析】分析:(1)先求,再写出直线的回归方程.(2)令回归方程中的x=6即得广告费用为6万元时的年利润.

详解:(Ⅰ)

由表中数据与附中公式,得

.

所以回归方程为.

(Ⅱ)回归方程为.

时,万元.

广告费用为6万元时的年利润为65.5万元.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知向量a(cos2ωxsin2ωxsinωx)b(2cosωx),设函数f(x)a·b(xR)的图象关于直线x对称,其中ω为常数,且ω(01)

(1)求函数f(x)的最小正周期和单调递增区间;

(2)若将yf(x)图象上各点的横坐标变为原来的,再将所得图象向右平移个单位,纵坐标不变,得到yh(x)的图象,若关于x的方程h(x)k0上有且只有一个实数解,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ,若F(x)=f[f(x)+1]+m有两个零点x1 , x2 , 则x1x2的取值范围是(
A.[4﹣2ln2,+∞)
B.( ,+∞)
C.(﹣∞,4﹣2ln2]
D.(﹣∞,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,直线l的参数方程为 (t为参数),在以原点O为极点,x轴正半轴为极轴的极坐标系中,圆C的方程为ρ=6sinθ.
(Ⅰ)写出直线l的普通方程和圆C的直角坐标方程;
(Ⅱ)设点P(4,3),直线l与圆C相交于A,B两点,求 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图放置的边长为2的正三角形沿轴滚动,记滚动过程中顶点的横、纵坐标分别为,设的函数,记,则下列说法中:

①函数的图像关于轴对称;

②函数的值域是

③函数上是增函数;

④函数上有个交点.

其中正确说法的序号是_______.

说明:“正三角形沿轴滚动”包括沿轴正方向和沿轴负方向滚动.沿轴正方向滚动指的是先以顶点B为中心顺时针旋转,当顶点C落在轴上时,再以顶点C为中心顺时针旋转,如此继续.类似地,正三角形可以沿轴负方向滚动.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数f(x)=2cos2x的图象向右平移 个单位后得到函数g(x)的图象,若函数g(x)在区间[0, ]和[2a, ]上均单调递增,则实数a的取值范围是(
A.[ ]
B.[ ]
C.[ ]
D.[ ]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示的几何体中,ABC﹣A1B1C1为三棱柱,且AA1⊥平面ABC,四边形ABCD为平行四边形,AD=2CD,∠ADC=60°.
(1)若AA1=AC,求证:AC1⊥平面A1B1CD;
(2)若CD=2,AA1=λAC,二面角A﹣C1D﹣C的余弦值为 ,求三棱锥C1﹣A1CD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数f(x)=2cos2x的图象向右平移 个单位后得到函数g(x)的图象,若函数g(x)在区间[0, ]和[2a, ]上均单调递增,则实数a的取值范围是(
A.[ ]
B.[ ]
C.[ ]
D.[ ]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求函数的极值;

(2)若函数有两个零点,且,证明:.

查看答案和解析>>

同步练习册答案