【题目】年年底,某城市地铁交通建设项目已经基本完成,为了解市民对该项目的满意度,分别从不同地铁站点随机抽取若干市民对该项目进行评分(满分分),绘制如下频率分布直方图,并将分数从低到高分为四个等级:
满意度评分 | 低于60分 | 60分到79分 | 80分到89分 | 不低于90分 |
满意度等级 | 不满意 | 基本满意 | 满意 | 非常满意 |
已知满意度等级为基本满意的有人.
(1)求频率分布于直方图中的值,及评分等级不满意的人数;
(2)相关部门对项目进行验收,验收的硬性指标是:市民对该项目的满意指数不低于,否则该项目需进行整改,根据你所学的统计知识,判断该项目能否通过验收,并说明理由.
科目:高中数学 来源: 题型:
【题目】某保险公司有一款保险产品的历史收益率(收益率利润保费收入)的频率分布直方图如图所示:
(1)试估计这款保险产品的收益率的平均值;
(2)设每份保单的保费在20元的基础上每增加元,对应的销量为(万份).从历史销售记录中抽样得到如下5组与的对应数据:
元 | 25 | 30 | 38 | 45 | 52 |
销量为(万份) | 7.5 | 7.1 | 6.0 | 5.6 | 4.8 |
由上表,知与有较强的线性相关关系,且据此计算出的回归方程为.
(ⅰ)求参数的值;
(ⅱ)若把回归方程当作与的线性关系,用(1)中求出的收益率的平均值作为此产品的收益率,试问每份保单的保费定为多少元时此产品可获得最大利润,并求出最大利润.注:保险产品的保费收入每份保单的保费销量.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数图像上一点处的切线方程为
(1)求的值;
(2)若方程在区间内有两个不等实根,求的取值范围;
(3)令如果的图像与轴交于两点,的中点为,求证:
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分12分)如图,在多面体中,底面是边长为的的菱形, ,四边形是矩形,平面平面, , 和分别是和的中点.
(Ⅰ)求证:平面平面;
(Ⅱ)求二面角的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】古希腊数学家阿波罗尼奧斯(约公元前262~公元前190年)的著作《圆锥曲线论》是古代世界光辉的科学成果,他证明过这样一个命题:平面内与两定点距离的比为常数k(k>0,k≠1)的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆.在平面直角坐标系中,设A(﹣3,0),B(3,0),动点M满足=2,则动点M的轨迹方程为()
A. (x﹣5)2+y2=16B. x2+(y﹣5)2=9
C. (x+5)2+y2=16D. x2+(y+5)2=9
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点M(x,y)满足
(1)求点M的轨迹E的方程;
(2)设过点N(﹣1,0)的直线l与曲线E交于A,B两点,若△OAB的面积为(O为坐标原点).求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图是一个二次函数y=f(x)的图象
(1)写出这个二次函数的零点
(2)求这个二次函数的解析式
(3)当实数k在何范围内变化时,函数g(x)=f(x)-kx在区间[-2,2]上是单调函数?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com