精英家教网 > 高中数学 > 题目详情

对于给定数列{an},如果存在实常数p,q,使得an+1=pan+q对于任意n∈N*都成立,我们称数列{an}是“M类数列”.

(Ⅰ)已知数列{bn}是“M类数列”且bn=2n,求它对应的实常数p,q的值;

(Ⅱ)若数列{cn}满足c1=1,cn+1-cn=2n(n∈N*),求数列{cn}的通项公式.并判断{cn}是否为“M类数列”,说明理由.

答案:
解析:

  解:(Ⅰ) 6分

  (Ⅱ)因为

  所以

  也满足上式,

  所以

  可推得是为“M类数列” 14分


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2010•台州二模)对于给定数列{an},如果存在实常数p,q,使得an+1=pan+q对于任意n∈N*都成立,我们称数列{an}是“M类数列”.
(Ⅰ)已知数列{bn}是“M类数列”且bn=2n,求它对应的实常数p,q的值;
(Ⅱ)若数列{cn}满足c1=1,cn+1-cn=2n(n∈N*),求数列{cn}的通项公式.并判断{cn}是否为“M类数列”,说明理由.

查看答案和解析>>

科目:高中数学 来源:河南省卫辉市第一中学2012届高三4月考试数学理科试题 题型:044

对于给定数列{an},如果存在实常数p,q,使得an+1=pan+q对于任意n∈N*都成立,我们称数列{an}是“M类数列”.

(Ⅰ)已知数列{bn}是“M类数列”且bn=2n,求它对应的实常数p,q的值;

(Ⅱ)若数列{cn}满足c1=1,cn+1-cn=2n(n∈N*),求数列{cn}的通项公式.并判断{cn}是否为“M类数列”,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

对于给定数列{an},如果存在实常数p,q,使得an+1=pan+q对于任意n∈N*都成立,我们称数列{an}是“M类数列”.
(Ⅰ)已知数列{bn}是“M类数列”且bn=2n,求它对应的实常数p,q的值;
(Ⅱ)若数列{cn}满足c1=1,cn+1-cn=2n(n∈N*),求数列{cn}的通项公式.并判断{cn}是否为“M类数列”,说明理由.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年河南省新乡市卫辉一中高三(下)4月月考数学试卷(理科)(解析版) 题型:解答题

对于给定数列{an},如果存在实常数p,q,使得an+1=pan+q对于任意n∈N*都成立,我们称数列{an}是“M类数列”.
(Ⅰ)已知数列{bn}是“M类数列”且bn=2n,求它对应的实常数p,q的值;
(Ⅱ)若数列{cn}满足c1=1,cn+1-cn=2n(n∈N*),求数列{cn}的通项公式.并判断{cn}是否为“M类数列”,说明理由.

查看答案和解析>>

科目:高中数学 来源:2010年浙江省台州市高考数学二模试卷(文科)(解析版) 题型:解答题

对于给定数列{an},如果存在实常数p,q,使得an+1=pan+q对于任意n∈N*都成立,我们称数列{an}是“M类数列”.
(Ⅰ)已知数列{bn}是“M类数列”且bn=2n,求它对应的实常数p,q的值;
(Ⅱ)若数列{cn}满足c1=1,cn+1-cn=2n(n∈N*),求数列{cn}的通项公式.并判断{cn}是否为“M类数列”,说明理由.

查看答案和解析>>

同步练习册答案