如果函数f(x)在x=x处取得极值,则点(x,f(x))称为函数f(x)的一个极值点.已知函数f(x)=ax3+bx2+cx+d(a≠0,a,b,c,d∈R)的一个极值点恰为坐标系原点,且y=f(x)在x=1处的切线方程为3x+y-1=0.
(1)求函数f(x)的解析式;
(2)求函数f(x)在[-2,2]上的值域.
【答案】分析:(1)由f(x)的极值点为原点得f(0)=0、f′(0)=0,可求d、c值,根据f(x)在x=1处的切线方程为3x+y-1=0可得f(1)=-2,f′(1)=-3,联立可解得a、b;
(2)利用导数求出f(x)在[-2,2]上的极值、函数在区间端点处的函数值,其中最大者为最大值,最小者为最小值,由此可得值域;
解答:解:(1)f′(x)=3ax2+2bx+c,由f(0)=0,得d=0,
f′(0)=0,解得c=0,
又y=f(x)在x=1处的切线方程为3x+y-1=0,
所以f(1)=-2,即a+b=-2①,f′(1)=-3,即3a+2b=-3②,联立①②解得a=1,b=-3,
所以f(x)=x3-3x2;
(2)f′(x)=3x2-6x=3x(x-2)=0,解得x=0,2,
令f′(x)>0,得x<0或x>2,所以f(x)在[-2,0]内递增,
令f′(x)<0,得0<x<2,所以函数f(x)在[0,2]内递减,
所以f(x)max=f(0)=0,f(-2)=-20,f(2)=-4,所以f(x)min═-20,
故函数f(x)在[-2,2]上的值域为[-20,0].
点评:本题考查利用导数研究函数的极值、最值及函数在某点处的切线方程,属中档题.