【题目】已知,函数.
(1)讨论函数的单调性;
(2)若,且在时有极大值点,求证:.
【答案】(1)见解析;(2)见解析
【解析】
(1)对求导,分,,,进行讨论,可得函数的单调性;
(2)将代入,对求导,可得,再对求导,可得函数有唯一极大值点,且.
可得,设,对其求导后可得.
解:(1),
又,,时,,所以可解得:函数在单调递增,在单调递减;
经计算可得,时,函数在单调递减,单调递增,单调递减;
时,函数在单调递减,单调递增,单调递减;
时,函数在单调递减.
综上:时,函数在单调递增,单调递减;
时,函数在单调递减,单调递增,单调递减;
时,函数在单调递减;
时,函数在单调递减,单调递增,单调递减.
(2)若,则,
,
设,则,
当时,单调递减,即单调递减,
当时,单调递增,即单调递增.
又因为由可知:,
而,且,
,使得,且时,单调递增,
时,单调递减,时,单调递增,
所以函数有唯一极大值点,
且.
.
所以,
设(),则,
在单调递增,,,又因为,
.
科目:高中数学 来源: 题型:
【题目】已知点M(x,y)满足
(1)求点M的轨迹E的方程;
(2)设过点N(﹣1,0)的直线l与曲线E交于A,B两点,若△OAB的面积为(O为坐标原点).求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙、丙、丁四名同学组成一个4100米接力队,老师要安排他们四人的出场顺序,以下是他们四人的要求:甲:我不跑第一棒和第二棒;乙:我不跑第一棒和第四棒;丙:我也不跑第一棒和第四棒;丁:如果乙不跑第二棒,我就不跑第一棒.老师听了他们四人的对话,安排了一种合理的出场顺序,满足了他们的所有要求,据此我们可以断定在老师安排的出场顺序中跑第三棒的人是_________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2019年5月31日晚,大连市某重点高中举行一年一度的毕业季灯光表演.学生会共安排6名高一学生到学校会议室遮挡4个窗户,要求两端两个窗户各安排1名学生,中间两个窗户各安排两名学生,不同的安排方案共有( )
A.720B.360C.270D.180
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知曲线的参数方程为(为参数).在以坐标原点为极点,轴的正半轴为极轴的极坐标系中,曲线: .
(Ⅰ)求曲线的普通方程和的直角坐标方程;
(Ⅱ)若与相交于两点,设点,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物.我国标准采用世卫组织设定的最宽限值,即日均值在35微克/立方米以下空气质量为一级;在35微克/立方米至75微克/立方米之间空气质量为二级;在75微克/立方米以上空气质量为超标.某市环保局从市区2016年全年每天的监测数据中,随机抽取15天的数据作为样本,监测值如茎叶图所示:(十位为茎,个位为叶)
(1)从这15天的数据中任取3天的数据,求空气质量至少有一天达到一级的概率;
(2)以这15天的日均值来估算一年的空气质量情况,则一年(按360天计算)中大致有多少天的空气质量达到一级.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数f(x)=Asin(ωx+φ)(其中A>0,ω>0,|φ|<)的图象如图所示,为了得到g(x)=Acosωx的图象,只需把y=f(x)的图象上所有的点( )
A. 向右平移个单位长度 B. 向左平移个单位长度
C. 向右平移个单位长度 D. 向左平移个单位长度
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在观察物体时,从物体上、下沿引出的光线在人眼处所成的夹角叫视角.研究表明,视角在范围内视觉效果最佳.某大广场竖立的大屏幕,屏幕高为20米,屏幕底部距离地面11.5米.站在大屏幕正前方,距离屏幕所在平面米处的某人,眼睛位置距离地面高度为1.5米,观察屏幕的视角为(情景示意图如图所示).
(1)为探究视觉效果,请从,,中选择一个作为,并求的表达式;
(2)根据(1)的选择探究是否有达到最佳视角效果的可能.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com