精英家教网 > 高中数学 > 题目详情

【题目】设函数f(x)=+k(+lnx)(k为常数).
(1)当k=0时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)当k≥0时,求函数f(x)的单调区间;
(3)若函数f(x)在(0,2)内存在两个极值点,求k的取值范围.

【答案】解:(1)当k=0时,f(x)=,f′(x)=
故f(1)=e,f′(1)=﹣e,
故曲线y=f(x)在点(1,f(1))处的切线方程为y﹣e=﹣e(x﹣1),
即切线方程为:ex+y﹣2e=0;
(2)f(x)=+k(+lnx)的定义域为(0,+∞),
f′(x)=+k(﹣+)=(x﹣2)
∵k≥0,且x∈(0,+∞),∴>0,
故当x∈(0,2)时,f′(x)<0,当x∈(2,+∞)时,f′(x)>0;
故函数f(x)的单调减区间为(0,2),单调增区间为(2,+∞);
(3)由(2)知,f′(x)=(x﹣2)
<0在(0,2)上恒成立,
又∵函数f(x)在(0,2)内存在两个极值点,
∴h(x)=ex+kx在(0,2)内存在两个零点,
∴y=ex与y=﹣kx的图象在(0,2)内有两个交点,
作y=ex与y=﹣kx的图象如图,
相切时,设切点为(x,ex),
=ex
故x=1;
故k1=e;
k2==
故e<﹣k<
故﹣<k<﹣e.

【解析】(1)求导f′(x)= , 从而可得f(1)=e,f′(1)=﹣e,从而确定切线方程;
(2)求导f′(x)=(x﹣2) , 从而判断导数的正负以确定函数的单调性;
(3)求导f′(x)=(x﹣2) , 从而可得h(x)=ex+kx在(0,2)内存在两个零点,从而化为y=ex与y=﹣kx的图象在(0,2)内有两个交点,从而利用数形结合求解.
【考点精析】认真审题,首先需要了解函数的最大(小)值与导数(求函数上的最大值与最小值的步骤:(1)求函数内的极值;(2)将函数的各极值与端点处的函数值比较,其中最大的是一个最大值,最小的是最小值).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在圆锥中,已知,⊙O的直径,点C在底面圆周上,且的中点.

(Ⅰ)证明:∥平面

(Ⅱ)证明:平面平面

(Ⅲ)求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】△ABC中,A=120°,AB=5,BC,则AC的值为________

【答案】2

【解析】

利用余弦定理可得关于AC的方程,解之即可.

由余弦定理可知cosA===﹣

解得AC=2或﹣7(舍去)

故答案为:2

【点睛】

对于余弦定理一定要熟记两种形式:(1;(2.另外,在解与三角形、三角函数有关的问题时,还要记住 等特殊角的三角函数值,以便在解题中直接应用.

型】填空
束】
15

【题目】嫦娥奔月,举国欢庆,据科学计算,运载神六长征二号系列火箭,在点火第一秒钟通过的路程为2 km,以后每秒钟通过的路程都增加2 km,在达到离地面210 km的高度时,火箭与飞船分离,则这一过程大约需要的时间是______秒.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了得到函数y=sin4x﹣cos4x的图象,可以将函数y=sin4x的图象(  )
A.向右平移个单位
B.向左平移个单位
C.向右平移个单位
D.向左平移个单位

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高校文学院和理学院的学生组队参加大学生电视辩论赛,文学院推荐了2名男生,3名女生,理学院推荐了4名男生,3名女生,文学院和理学院所推荐的学生一起参加集训,由于集训后学生水平相当,从参加集训的男生中随机抽取3人,女生中随机抽取3人组成代表队.
(1)求文学院至少有一名学生入选代表队的概率;
(2)某场比赛前,从代表队的6名学生在随机抽取4名参赛,记X表示参赛的男生人数,求X的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥PABCD中,PA⊥平面ABCD,PB与底面所成的角为45°,底面ABCD为直角梯形,∠ABC=∠BAD=90°,PA=BC=AD=1.问:在棱PD上是否存在一点E,使得CE∥平面PAB?若存在,求出E点的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中不正确的是( )

A. 平面平面,一条直线平行于平面,则一定平行于平面

B. 平面平面,则内的任意一条直线都平行于平面

C. 一个三角形有两条边所在的直线分别平行于一个平面,那么该三角形所在的平面与这个平面平行

D. 分别在两个平行平面内的两条直线只能是平行直线或异面直线

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在等差数列中,,前项和满足条件

1)求数列的通项公式和

2)记,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设是两个非零向量,则下列哪个描述是正确的(  )
A.若|+|=||﹣||,则
B.若 , 则|+|=||﹣||
C.若|+|=||﹣||,则存在实数λ使得=
D.若存在实数λ使得= , 则|+|=||﹣||

查看答案和解析>>

同步练习册答案