精英家教网 > 高中数学 > 题目详情

【题目】从6名男生和4名女生中任选4人参加比赛,设被选中女生的人数为随机变量ξ,求:
(Ⅰ)ξ的分布列;
(Ⅱ)所选女生不少于2人的概率.

【答案】解:(Ⅰ)依题意,ξ的可能取值为0,1,2,3,4,

ξ股从超几何分布P(ξ=k)= ,k=0,1,2,3,4,

P(ξ=0)= =

P(ξ=1)= =

P(ξ=2)= =

P(ξ=3)= =

P(ξ=4)= =

∴ξ的分布列为:

ξ

0

1

2

3

4

P

(Ⅱ)所选女生不少于2人的概率为:

P(ξ≥2)=P(ξ=2)+P(ξ=3)+P(ξ=4)

= =


【解析】(Ⅰ)依题意,ξ的可能取值为0,1,2,3,4,ξ股从超几何分布P(ξ=k)= ,由此能求出ξ的分布列.(Ⅱ)所选女生不少于2人的概率为P(ξ≥2)=P(ξ=2)+P(ξ=3)+P(ξ=4),由此能求出结果.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知随机变量X~N(μ,σ2),且其正态曲线在(-∞,80)上是增函数,在(80,+∞)上为减函数,且P(72≤X≤88)=0.682 6.

(1)求参数μ,σ的值;

(2)求P(64<X≤72).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】判定下列函数的奇偶性.

1fx

2fx

3fx

4fx=|x+1|+|x-1|.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,ABCD-A1B1C1D1是正方体,在图中E,F分别是D1C1,B1B的中点,画出图中有阴影的平面与平面ABCD的交线,并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业有甲、乙两个研发小组,他们研发新产品成功的概率分别为 .现安排甲组研发新产品A,乙组研发新产品B,设甲、乙两组的研发相互独立.
(Ⅰ)求至少有一种新产品研发成功的概率;
(Ⅱ)若新产品A研发成功,预计企业可获利润120万元;若新产品B研发成功,预计企业可获利润100万元,求该企业可获利润的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在△ABC中,ab·cos Cc·cos B,其中abc分别为角ABC的对边,在四面体PABC中,S1S2S3S分别表示△PAB△PBC△PCA△ABC的面积,αβγ依次表示面PAB,面PBC,面PCA与底面ABC所成二面角的大小.写出对四面体性质的猜想,并证明你的结论

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某同学在研究函数(x∈R)时,分别给出下面几个结论:

①函数f(x)是奇函数;②函数f(x)的值域为(-1,1);③函数f(x)在R上是增函数;其中正确结论的序号是

A. ①② B. ①③ C. ②③ D. ①②③

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若a、b是方程2(lg x)2-lg x63=0的两个实根,求lg(ab)·(logab+logba)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,( )是偶函数.

(1)求的值;

(2)设函数,其中.若函数的图象有且只有一个交点,求的取值范围.

查看答案和解析>>

同步练习册答案