精英家教网 > 高中数学 > 题目详情

【题目】如图,已知圆经过椭圆)的左右焦点,与椭圆在第一象限的交点为,且三点共线.

)求椭圆的方程;

)设与直线为原点)平行的直线交椭圆两点.当的面积取到最大值时,求直线的方程.

【答案】.

【解析】

试题分析:三点共线可知为圆的直径,从而可得在圆方程中令求出,由勾股定理可求得,由椭圆定义求出的值即可;设直线的方程为,联立方程组,由弦长公式求出,由点到直线的距离公式求出到直线的距离,求出三角形面积表达式,由基本不等式求最值及取得最值时的值即可.

试题解析:三点共线,为圆的直径,且

(2分)

.(3分)

………(4分)

椭圆的方程为(5分)

)由()知,点的坐标为

直线的斜率为(6分)

故设直线的方程为

联立得,…………(7分)

……(8分)

……(9分)

到直线的距离(10分)

当且仅当,即时等号成立,

此时直线的方程为…………(12分)

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】判断下列函数的奇偶性.

(1)f(x)=x2-|x|+1,x[-1,4]; (2)f(x)=

(3)f(x)= (4)f(x)=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a是实数,函数f(x)= (x-a).

(1)求函数f(x)的单调区间;

(2)设g(a)为f(x)在区间[0,2]上的最小值.

①写出g(a)的表达式;

②求a的取值范围,使得-6≤g(a)≤-2.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某地区某高传染性病毒流行期间,为了建立指标显示疫情已受控制,以便向该地区居众显示可以过正常生活,有公共卫生专家建议的指标是“连续7天每天新增感染人数不超过5人”,根据连续7天的新增病例数计算,下列各选项中,一定符合上述指标的是( )

平均数≤3;标准差S≤2;平均数≤3且标准差S≤2;平均数≤3且极差小于或等于2;众数等于1且极差小于或等于1.

A.①② B.③④

C.③④⑤ D.④⑤

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若曲线在点处的切线与直线平行,求的值;

(2)若,求函数在区间上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知底角为45的等腰梯形ABCD,底边BC长为7cm,腰长为,当一条垂直于底边BC

(垂足为F)的直线l从左至右移动(与梯形ABCD有公共点)时,直线l把梯形分成两部分,令BF=x

(1)试写出直线l左边部分的面积f(x)与x的函数.

(2)已知A={x|f(x)<4},B={x|a2<x<a+2},若AB=B,求a的取值范围。.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆的中心在坐标原点,焦点在轴上,焦点到短轴端点的距离为2,离心率为.

(Ⅰ)求该椭圆的方程;

(Ⅱ)若直线与椭圆交于 两点且,是否存在以原点为圆心的定圆与直线相切?若存在求出定圆的方程;若不存在,请说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=cos xsin 2x,下列结论中正确的是________(填入正确结论的序号).

①y=f(x)的图象关于点(2π,0)中心对称;

②y=f(x)的图象关于直线x=π对称;

③f(x)的最大值为

④f(x)既是奇函数,又是周期函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)axx2xlnaa>1.

(1)求证:函数f(x)(0,+∞)上单调递增;

(2)对任意x1x2∈[1,1]|f(x1)f(x2)|≤e1恒成立,求a的取值范围.

查看答案和解析>>

同步练习册答案