精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的一个顶点是,离心率为

)求椭圆的方程;

)已知矩形的四条边都与椭圆相切,设直线AB方程为,求矩形面积的最小值与最大值.

【答案】;()当S有最大值10;当k=0时,S有最小值8.

【解析】

试题()利用待定系数法即可,由题意,椭圆的一个顶点是

所以,又,椭圆C的方程是;()注意斜率的讨论,当时,

椭圆的外切矩形面积为8. 时, AB所在直线方程为,所以,直线BCAD的斜率均为.联立直线AB与椭圆方程可得,令得到,直线AB与直线DC之间的距离为,同理可求BCAD距离为,所以矩形ABCD的面积为,再利用基本不等式即可解决.

试题解析:()由题意,椭圆的一个顶点是

所以

又,离心率为,即

解得

故椭圆C的方程是

)当时,

椭圆的外切矩形面积为8.

时,

椭圆的外切矩形的边AB所在直线方程为

所以,直线BCAD的斜率均为.

,消去y

化简得:

所以,直线AB方程为

直线DC方程为

直线AB与直线DC之间的距离为

同理,可求BCAD距离为

则矩形ABCD的面积为

由均值定理

仅当,即S有最大值10.

因此,当S有最大值10

K=0时,S有最小值8.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知点和椭圆. 直线与椭圆交于不同的两点.

(Ⅰ) 求椭圆的离心率;

(Ⅱ) 当时,求的面积;

(Ⅲ)设直线与椭圆的另一个交点为,当中点时,求的值 .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的两焦点为,且过点,直线交曲线两点,为坐标原点.

1)求椭圆的标准方程;

2)若不过点且不平行于坐标轴,记线段的中点为,求证:直线的斜率与的斜率的乘积为定值;

3)若直线过点,求面积的最大值,以及取最大值时直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正方体ABCDA1B1C1D1的棱长为1,线段B1D1上有两个动点EF,且EF,则下列结论中正确的序号是_____

①AC⊥BE ②EF∥平面ABCD ③△AEF的面积与△BEF的面积相等.④三棱锥A﹣BEF的体积为定值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆心为的圆经过点,且圆心在直线轴上.

(Ⅰ)求圆的方程;

(Ⅱ)过点的动直线与圆相交于两点.当时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(数学文卷·2017届重庆十一中高三12月月考第16题) 现介绍祖暅原理求球体体积公式的做法:可构造一个底面半径和高都与球半径相等的圆柱,然后在圆柱内挖去一个以圆柱下底面圆心为顶点,圆柱上底面为底面的圆锥,用这样一个几何体与半球应用祖暅原理(图1),即可求得球的体积公式.请研究和理解球的体积公式求法的基础上,解答以下问题:已知椭圆的标准方程为 ,将此椭圆绕y轴旋转一周后,得一橄榄状的几何体(图2),其体积等于______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在点处的切线与直线平行.

(Ⅰ)求实数的值;

(Ⅱ)设

i)若函数上恒成立,求的最大值;

ii)当时,判断函数有几个零点,并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图给出的是某高校土木工程系大四年级55名学生期末考试专业成绩的频率分布折线图(连接频率分布直方图中各小长方形上端的中点),其中组距为10,且本次考试中最低分为50分,最高分为100分.根据图中所提供的信息,则下列结论中正确的是( )

A. 成绩是75分的人数有20人

B. 成绩是100分的人数比成绩是50分的人数多

C. 成绩落在70-90分的人数有35人

D. 成绩落在75-85分的人数有35人

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】10种不同的作物种子中选出6种分别放入6个不同的瓶子中,每瓶不空,如果甲、乙两种种子都不许放入第一号瓶子内,那么不同的放法共有( 

A.B.C.D.

查看答案和解析>>

同步练习册答案