精英家教网 > 高中数学 > 题目详情

若数列的前项和为,对任意正整数都有,记
(1)求,的值;
(2)求数列的通项公式;
(3)若求证:对任意

(1);(2);(3)见试题解析.

解析试题分析:(1)分别令可求得的值;(2)利用的关系式,先求,再利用已知条件求得数列的通项公式;(3)先利用累加法求得,再利用裂项相消法求和,进而可证明不等式.
试题解析:(1)由,得,解得.      1分
,得,解得.      3分
(2)由           ①,            
时,有  ②,                4分
①-②得:,                   5分
数列是首项,公比的等比数列       6分
,        7分
.           8分
(3)
,     (1)
,     (2)


,   ()        9分
(1)+(2)+   +()得,    10分
,                                    11分 
,            12分

,           13分
,                 
对任意均成立.       14分
考点:1、数列通项公式的求法;2、数列前项和的求法;3、数列不等式的证明.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设数列{an} 的前n项和为Sn,满足2Sn=an+1﹣2n+1+1,n∈N*,且a1,a2+5,a3成等差数列.
(1)求a1,a2,a3的值;
(2)求证:数列{an+2n}是等比数列;
(3)证明:对一切正整数n,有++…+

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列的首项其中令集合.
(Ⅰ)若,写出集合中的所有的元素;
(Ⅱ)若,且数列中恰好存在连续的7项构成等比数列,求的所有可能取值构成的集合;
(Ⅲ)求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知正项数列的前项和为的等比中项.
(1)求证:数列是等差数列;
(2)若,且,求数列的通项公式;
(3)在(2)的条件下,若,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设数列满足:
(Ⅰ)求的通项公式及前项和
(Ⅱ)已知是等差数列,为前项和,且.求的通项公式,并证明:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列中,,前
(Ⅰ)求证:数列是等差数列; (Ⅱ)求数列的通项公式;
(Ⅲ)设数列的前项和为,是否存在实数,使得对一切正整数都成立?若存在,求的最小值,若不存在,试说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知无穷数列中, 、构成首项为2,公差为-2的等差数列,,构成首项为,公比为的等比数列,其中.
(1)当,时,求数列的通项公式;
(2)若对任意的,都有成立.
①当时,求的值;
②记数列的前项和为.判断是否存在,使得成立?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

数列满足
(1)计算,由此猜想通项公式,并用数学归纳法证明此猜想;
(2)若数列满足,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(1)已知实数,求证:
(2)在数列{an}中,,写出并猜想这个数列的通项公式达式.

查看答案和解析>>

同步练习册答案