精英家教网 > 高中数学 > 题目详情
若函数f(x)在定义域(-1,1)内可导,且f′(x)<0;又对任意a、b∈(-1,1)且a+b=0时恒有f(a)+f(b)=0,
(1)判断函数奇偶性
(2)解不等式f(1-m)+f(1-m2)>0.
分析:(1)由已知中f′(x)<0,我们易得在区间(-1,1)上为减函数,结合a+b=0时恒有f(a)+f(b)=0,我们易得f(-x)=-f(x),进而得到答案.
(2)由(1)的结论,我们易根据函数的奇偶性及函数的单调性和定义域,构造出满足条件的不等式组,解不等式组即可得到答案.
解答:解:(1)∵f′(x)<0;
∴f(x)在(-1,1)上是减函数(2分)
∵a、b∈(-1,1)且a+b=0,恒有f(a)+f(b)=0,
∴f(x)在(-1,1)上是奇函数(5分)
(2)f(1-m)+f(1-m2)>0?f(1-m)>-f(1-m2)=f(m2-1).(7分)
1-m<m2-1
-1<1-m<1
-1<1-m2<1
(10分)   
解得:1<m<
2
(13分)
所以原不等式的解集为(1,
2
)
(14分)
点评:本题考查的知识点是抽象函数及其应用,函数单调性和奇偶性的综合应用,在解答(2)时,易忽略函数的定义域为(-1,1),而错解为(-∞,-2)∪(1,+∞).
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出定义:若函数f(x)在D上可导,即f′(x)存在,且导函数f′(x)在D上也可导,则称f(x)在D上存在二阶导函数,记f(x)=(f′(x))′,若f(x)<0在D上恒成立,则称f(x)在D上为凸函数.对于给出的四个函数:
①f(x)=sinx+cosx,②f(x)=lnx-2x,③f(x)=-x4+x3-x2+1,④f(x)=-xe-x
以上四个函数在(0,
π2
)
上是凸函数的是
①②③
①②③
(请把所有正确的序号均填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)是定义在R上的奇函数,在(-∞,0)上为减函数,且f(2)=0,则使得f(x)<0的x的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•湖北模拟)设函数f(x)=(x-1)2+blnx.
(1)若f(x)在x=2时取得极小值,求b的值;
(2)若函数f(x)在定义城上是单调函数,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数f(x)=(x-1)2+blnx.
(1)若f(x)在x=2时取得极小值,求b的值;
(2)若函数f(x)在定义城上是单调函数,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年湖北省七市州高三(下)4月联考数学试卷(文科)(解析版) 题型:解答题

设函数f(x)=(x-1)2+blnx.
(1)若f(x)在x=2时取得极小值,求b的值;
(2)若函数f(x)在定义城上是单调函数,求b的取值范围.

查看答案和解析>>

同步练习册答案