精英家教网 > 高中数学 > 题目详情
19.已知实数a>0,命题p:?x∈R,|sinx|>a有解;命题q:?x∈[$\frac{\sqrt{2}}{2}$,1],x2+ax-1≥0恒成立.
(1)写出?q;        
(2)若p且q为真,求实数a的取值范围.

分析 (1)首先,命题p为特称命题,其否定为全称命题,直接结合含有一个量词的否定进行处理即可;
(2)先判断所给命题的真假,然后,根据“且”构成的复合命题的真假判断方法进行求解.

解答 解:(1)命题q:?x∈[$\frac{\sqrt{2}}{2}$,1],x2+ax-1≥0恒成立,
∴?q:?x∈[$\frac{\sqrt{2}}{2}$,1],x2+ax-1<0成立
(2)∵p且q为真,
∴p和q都为真,
∴命题p:?x∈R,|sinx|>a有解为真命题,
则a∈(0,1),①
∵命题q:?x∈[$\frac{\sqrt{2}}{2}$,1],x2+ax-1≥0恒成立,
∴a≥-x+$\frac{1}{x}$,
设f(x)≥-x+$\frac{1}{x}$,
∴f′(x)=-1-$\frac{1}{{x}^{2}}$<0恒成立,
∴f(x)单调递减,
∴f(x)max=f($\frac{\sqrt{2}}{2}$)=$\frac{\sqrt{2}}{2}$
∴a≥$\frac{\sqrt{2}}{2}$,②
由①②,可得a的取值范围为[$\frac{\sqrt{2}}{2}$,1)

点评 本题重点考查了简单命题的真假判断,复合命题的真值表应用,注意“且”的含义,理解全称命题和特称命题的否定方式和方法,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知函数$f(x)={(\frac{1}{3})^x},x∈[{-1,1}]$,函数g(x)=f2(x)-2af(x)+3
(1)若a=1,证明:函数g(x)在区间[-1,0]上为减函数;
(2)求g(x)的最小值h(a)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.直线y=kx-2交抛物线y2=x于A、B两点,(1)求k的取值范围;(2)若AB的中点横坐标为2,求|AB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设定义R上在函数f(x)=$\left\{\begin{array}{l}{{2}^{-x},x<0}\\{a{x}^{3}+(b-4a){x}^{2}-(4b+m)x+n,0≤x≤4}\\{a(lo{g}_{4}x-1),x>4}\end{array}\right.$(a,b,m,n为常数,且a≠0)的图象不间断.
(1)求m,n的值;
(2)设a,b互为相反数,且f(x)是R上的单调函数,求a的取值范围;
(3)若a=1,b∈R,试讨论函数g(x)=f(x)+b的零点的个数,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数f(x)=$\left\{\begin{array}{l}{|lgx|,x>0}\\{-{x}^{2}-2x,x≤0}\end{array}\right.$,若函数y=2[f(x)]2+3mf(x)+1有8个不同的零点,则实数m的取值范围是(-1,-$\frac{2\sqrt{2}}{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.f(x)=ex+ae-x为奇函数,则a=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,在四棱锥S-ABCD中,侧棱SA=SB=SC=SD,底面ABCD菱形,AC与BD交于O点.求证:AC⊥平面SBD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知⊙C:(x-5)2+y2=9,直线1:y=x+b,
(1)当⊙C与直线1相切时,求直线1的方程;
(2)当直线1被⊙C截得的弦长为4时,求直线1的方程;
(3)当点P(a,b)在⊙C上运动时,求$\frac{a}{b}$的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知tan$\frac{θ}{2}$=2,求tanθ,sin2θ及cos2θ的值.

查看答案和解析>>

同步练习册答案