精英家教网 > 高中数学 > 题目详情

【题目】已知平面直角坐标系中,过点的直线l的参数方程为 (t为参数),以原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为与曲线C相交于不同的两点M,N.

(1)求曲线C的直角坐标方程和直线l的普通方程;

(2)若,求实数a的值.

【答案】(1)直线方程为 x-y-1=0,(2) .

【解析】

分析:(1)先根据加减消元得直线的普通方程;根据将曲线的极坐标方程化为直角坐标方程,(2)先将直线参数方程代入曲线的直角坐标方程,利用参数几何意义以及韦达定理得实数的值.

详解:(1)∵为参数),

∴直线的普通方程为.

,∴

得曲线的直角坐标方程为.

(2)∵,∴

设直线上的点对应的参数分别是

,∴,∴

,代入,得

又∵,∴.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设抛物线的顶点为坐标原点,焦点轴的正半轴上,点是抛物线上的一点,以为圆心,2为半径的圆与轴相切,切点为.

(I)求抛物线的标准方程:

(Ⅱ)设直线轴上的截距为6,且与抛物线交于,两点,连接并延长交抛物线的准线于点,当直线恰与抛物线相切时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆)的离心率是,点在短轴上,且

(1)球椭圆的方程;

(2)设为坐标原点,过点的动直线与椭圆交于两点。是否存在常数,使得为定值?若存在,求的值;若不存在,请说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】假设关于某设备的使用年限(年)和所支出的年平均维修费用(万元)(即维修费用之和除以使用年限),有如下的统计资料:

使用年限

2

3

4

5

6

维修费用

2.2

3.8

5.5

6.5

7.0

(1)画出散点图;

(2)求关于的线性回归方程;

(3)估计使用年限为10年时所支出的年平均维修费用是多少?

参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】利用独立性检验的方法调查高中生性别与爱好某项运动是否有关,通过随机调查200名高中生是否爱好某项运动,利用列联表,由计算可得,参照下表:

0.01

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5,024

6.635

7.879

10.828

得到的正确结论是(

A. 99%以上的把握认为“爱好该项运动与性别无关

B. 99%以上的把握认为“爱好该项运动与性别有关”

C. 在犯错误的概率不超过0.5%的前提下,认为“爱好该项运动与性别有关”

D. 在犯错误的概率不超过0.5%的前提下,认为“爱好该项运动与性别无关”

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某体育公司对最近6个月内的市场占有率进行了统计,结果如表:

(1)可用线性回归模型拟合之间的关系吗?如果能,请求出关于的线性回归方程,如果不能,请说明理由;

(2)公司决定再采购两款车扩大市场,两款车各100辆的资料如表:

平均每辆车每年可为公司带来收入500元,不考虑采购成本之外的其他成本,假设每辆车的使用寿命都是整数年,用每辆车使用寿命的频率作为概率,以每辆车产生利润的期望值作为决策依据,应选择采购哪款车型?

参考数据:

参考公式:相关系数

回归直线方程,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面平面,底面为平行四边形,.

(1)求的长;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,椭圆的离心率为,顶点为.

(1)求椭圆的方程

(2)若是椭圆上除顶点外的任意一点直线轴于点直线于点.设的斜率为的斜率为试问是否为定值并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】据市场分析,广饶县驰中集团某蔬菜加工点,当月产量在10吨至25吨时,月生产总成本(万元)可以看成月产量(吨)的二次函数.当月产量为10吨时,月总成本为20万元;当月产量为15吨时,月总成本最低为17.5万元.

1)写出月总成本(万元)关于月产量(吨)的函数关系;

2)已知该产品销售价为每吨1.6万元,那么月产量为多少时,可获最大利润;

3)当月产量为多少吨时, 每吨平均成本最低,最低成本是多少万元?

查看答案和解析>>

同步练习册答案