精英家教网 > 高中数学 > 题目详情

一个几何体的三视图如下图所示,已知正(主)视图是底边长为1的平行四边形,侧(左)视图是一个长为,宽为1的矩形,俯视图为两个边长为1的正方形拼成的矩形.

(1)求该几何体的体积V
(2)求该几何体的表面积S.

(1)(2)2+6

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,在体积为的正三棱锥中,长为为棱的中点,求

(1)异面直线所成角的大小(结果用反三角函数值表示);
(2)正三棱锥的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥P-ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,E为PD的中点,PA=2AB=2。

(1)求证:CE∥平面PAB;
(2)求四面体PACE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图(1)所示,△ABC是等腰直角三角形,AC=BC=4,E、F分别为AC、AB的中点,将△AEF沿EF折起,使A′在平面BCEF上的射影O恰为EC的中点,得到图(2).

(1)求证:EF⊥A′C;
(2)求三棱锥FA′BC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示的多面体中,是菱形,是矩形,,

(1)求证:平
(2)若,求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,三棱柱ABCA1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.

(1)证明:AB⊥A1C;
(2)若AB=CB=2,A1C=,求三棱柱ABCA1B1C1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知平行四边形ABCD中,BC=2,BD⊥CD,四边形ADEF为正方形,平面ADEF⊥平面ABCD.记CD=x,V(x)表示四棱锥F-ABCD的体积.

(1)求V(x)的表达式.
(2)求V(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在边长为4的菱形ABCD中,∠DAB=60°,点EF分别在边CDCB上,点E与点CD不重合,EFACEFACO,沿EF将△CEF翻折到△PEF的位置,使平面PEF⊥平面ABFED.

(1)求证:BD⊥平面POA
(2)记三棱锥P­ABD体积为V1,四棱锥P­BDEF体积为V2,且,求此时线段PO的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知直三棱柱中,,D为BC的中点.

(1)求证:∥面
(2)求三棱锥的体积.

查看答案和解析>>

同步练习册答案