精英家教网 > 高中数学 > 题目详情

将正△ABC分割成n2(n≥2,n∈N)个全等的小正三角形(图乙,图丙分别给出了n=2,3的情形),在每个三角形的顶点各放置一个数,使位于△ABC的三边及平行于某边的任一直线上的数(当数的个数不少于3时)都分别成等差数列,若顶点A,B,C处的三个数互不相同且和为1,记所有顶点上的数之和为f(n),则有f(2)=2,求f(3)和f(n).

 

【答案】

解析:当n=3时,如题图所示分别设各顶点的数用小写字母表示,即由条件知

a+b+c=1,x1+x2=a+b,y1+y2=b+c,z1+z2=c+a.

x1+x2+y1+y2+z1+z2=2(a+b+c)=2,

2g=x1+y2=x2+z1=y1+z2.

6g=x1+x2+y1+y2+z1+z2=2(a+b+c)=2.

即g=而f(3)=a+b+c+x1+x2+y1+y2+z1+z2+g=

1+2+=.

进一步可求得f(4)=5.由上知f(1)中有三个数,f(2)中有6个数,f(3)中共有10个数相加,f(4)中有15个数相加…,若f(n-1)中有an1(n>1)个数相加,可得f(n)中有(an1+n+1)个数相加,且由f(1)=1=,f(2)===f(1)+,f(3)==f(2)+,f(4)=5=f(3)+,…

可得f(n)=f(n-1)+,所以

f(n)=f(n-1)+=f(n-2)++=…

=++++f(1)

=+++++=(n+1)(n+2).

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

将正△ABC分割成n2(n≥2,n∈N)个全等的小正三 角形(图1,图2分别给出了n=2,3的情形),在每个三角形的顶点各放置一个数,使位于△ABC的三边及平行于某边的任一直线上的数(当数的个数不少于3时)都分别依次成等差数列,若顶点A,B,C处的三个数互不相同且和为1,记所有顶点上的数之和为f(n),则有f(2)=2,f(3)=
 
…,f(n)=
 

精英家教网

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009湖南卷理)将正ABC分割成≥2,n∈N)个全等的小正三角形(图2,图3分别给出了n=2,3的情形),在每个三角形的顶点各放置一个数,使位于ABC的三遍及平行于某边的任一直线上的数(当数的个数不少于3时)都分别一次成等差数列,若顶点A ,B ,C处的三个数互不相同且和为1,记所有顶点上的数之和为f(n),则有f(2)=2,f(3)=   ,…, 

查看答案和解析>>

科目:高中数学 来源: 题型:

将正⊿ABC分割成≥2,n∈N)个全等的小正三角形(图2,图3分别给出了n=2,3的情形),在每个三角形的顶点各放置一个数,使位于⊿ABC的三遍及平行于某边的任一直线上的数(当数的个数不少于3时)都分别一次成等差数列,若顶点A ,B ,C处的三个数互不相同且和为1,记所有顶点上的数之和为f(n),则有f(2)=2,f(3)=     ,…,f(n)=     

查看答案和解析>>

科目:高中数学 来源: 题型:

将正⊿ABC分割成≥2,n∈N)个全等的小正三角形(图2,图3分别给出了n=2,3的情形),在每个三角形的顶点各放置一个数,使位于⊿ABC的三遍及平行于某边的任一直线上的数(当数的个数不少于3时)都分别一次成等差数列,若顶点A ,B ,C处的三个数互不相同且和为1,记所有顶点上的数之和为f(n),则有f(2)=2,f(3)= ,…,f(n)= (n+1)(n+2)

查看答案和解析>>

同步练习册答案