精英家教网 > 高中数学 > 题目详情

某工厂生产两种元件,其质量按测试指标划分为:大于或等于7.5为正品,小于7.5为次品.现从一批产品中随机抽取这两种元件各5件进行检测,检测结果记录如下:


7
7
7.5
9
9.5

6

8.5
8.5

由于表格被污损,数据看不清,统计员只记得,且两种元件的检测数据的平均值相等,方差也相等.
(Ⅰ)求表格中的值;
(Ⅱ)若从被检测的5件种元件中任取2件,求2件都为正品的概率.

(Ⅰ) ;(Ⅱ) 

解析试题分析:(Ⅰ) 根据 列方程组解 的值;(Ⅱ)由(Ⅰ)的结果知,被检测的5件种元件,其中只有一件是次品,从中任取两件,列举出所有的基本结果,从中找出两件都是正品的基本结果的个数,由于是任意抽取的,每个结果出现的可能性是相等的,故可根据古典概型求2件都为正品的概率.
试题解析:(Ⅰ)因为
,得.            ①                      2分
因为
,得.    ②                      4分
由①②解得,因为,所以.             6分
(Ⅱ)记被检测的5件种元件分别为,其中为正品,
从中任取2件,共有10个基本事件,列举如下:

,               8分
记“2件都为正品”为事件,则事件包含以下6个基本事件:
.           10分
所以,即2件都为正品的概率为.                    12分
考点:1、样本均值、方差公式;2、古典概型.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据.

x
3
4
5
6
y
2.5
3
4
4.5
(1)请画出上表数据的散点图.
(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程=bx+a.
(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?
(参考数值:3×2.5+4×3+5×4+6×4.5=66.5)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某单位N名员工参加“社区低碳你我他”活动,他们的年龄在25岁至50岁之间,按年龄分组:第1组,第2组,第3组,第4组,第5组,得到的频率分布直方图如图所示,下表是年龄的频率分布表.


(1)求正整数的值;
(2)现要从年龄较小的第1,2,3组中用分层抽样的方法抽取6人,则年龄在第1,2,3组的人数分别是多少?
(3)在(2)的条件下,从这6人中随机抽取2人参加社区宣传交流活动,求恰有1人在第3组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

为了解某班关注NBA是否与性别有关,对本班48人进行了问卷调查得到如下的列联表:

 
关注NBA
不关注NBA
合计
男生
 
6
 
女生
10
 
 
合计
 
 
48
已知在全班48人中随机抽取1人,抽到关注NBA的学生的概率为.
(1)请将上面的表补充完整(不用写计算过程),并判断是否有95%的把握认为关注NBA与性别有关?说明你的理由.
(2)现记不关注NBA的6名男生中某两人为a,b,关注NBA的10名女生中某3人为c,d,e,从这5人中选取2人进行调查,求:至少有一人不关注NBA的被选取的概率。
下面的临界值表,供参考
P(K2≥k)
0.10
0.05
0.010
0.005
K
2.706
3.841
60635
7.879
(参考公式:)其中n=a+b+c+d

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某班高一某班的一次数学测试成绩的茎叶图和频率分布图都受到不同程度的破坏,但可见部分如下,据此解答如下问题:
 
(1)求分数在[50,60)的频率及全班人数;
(2)求分数在[80,90)之间的频数,并计算频率分布直方图中[80,90)间的矩形的高;
(3)若要从分数在[80,100]之间的试卷中任取两份分析学生失分情况,在抽取的试卷中,求至少有一份分数在[90,100]之间的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

根据空气质量指数(为整数)的不同,可将空气质量分级如下表:

(数值)






空气质量级别
一级
二级
三级
四级
五级
六级
空气质量类别


轻度污染
中度污染
重度污染
严重污染
空气质量类别颜色
绿色
黄色
橙色
红色
紫色
褐红色
某市日—日,对空气质量指数进行监测,获得数据后得到如图的条形图

(1)估计该城市本月(按天计)空气质量类别为中度污染的概率;
(2)在上述个监测数据中任取个,设为空气质量类别颜色为紫色的天数,求的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

对某电子元件进行寿命追踪调查,所得情况如下频率分布直方图.

(1)图中纵坐标处刻度不清,根据图表所提供的数据还原
(2)根据图表的数据按分层抽样,抽取个元件,寿命为之间的应抽取几个;
(3)从(2)中抽出的寿命落在之间的元件中任取个元件,求事件“恰好有一个寿命为,一个寿命为”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在2012年“双节”期间,高速公路车辆较多。某调查公司在一服务区从七座以下小型汽车中,按进服务区的先后每间隔50辆就抽取一辆的抽样方法,抽取了40名驾驶员进行调查,将他们在某段高速公路上的车速(km/t)分成6段:后得到如图的频率分布直方图。问:

(1)该公司在调查取样中,用到的是什么抽样方法?
(2)求这40辆小型汽车车速的众数和中位数的估计值;
(3)若从车速在中的车辆中任取2辆,求抽出的2辆中速度在中的车辆数的分布列及其数学期望。(12分)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

假设关于某设备的使用年限x和所支出的维修费用y(万元)有如下的统计资料:

使用年限x
2
3
4
5
6
维修费用y
2.2
3.8
5.5
6.5
7.0
(1)画出散点图;
(2)若线性相关,则求出回归方程
(3)估计使用年限为10年时,维修费用是多少?
(参考公式:

查看答案和解析>>

同步练习册答案