精英家教网 > 高中数学 > 题目详情
6.如上图,在长方体ABCD-A1B1C1D1中,AD=AA1=1,AB=2,点E在棱AB上移动,则直线D1E与A1D所成角的大小是90°,若D1E⊥EC,则直线A1D与平面D1DE所成的角为30°.

分析 以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,设E(1,t,0),0≤t≤2,分别求出$\overrightarrow{{D}_{1}E}$=(1,t,-1),$\overrightarrow{{A}_{1}D}$=(-1,0,-1),由$\overrightarrow{{D}_{1}E}$•$\overrightarrow{{A}_{1}D}$=0,能求出直线D1E与A1D所成角的大小;$\overrightarrow{{D}_{1}E}$•$\overrightarrow{EC}$=0,能求出AE的长,即可求出直线A1D与平面D1DE所成的角.

解答 解:∵在长方体ABCD-A1B1C1D1中,AD=AA1=1,AB=2,点E在棱AB上移动,
∴以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,
则D(0,0,0),D1(0,0,1),A(1,0,0),A1(1,0,1),C(0,2,0),
设E(1,t,0),0≤t≤2,
则$\overrightarrow{{D}_{1}E}$=(1,t,-1),$\overrightarrow{{A}_{1}D}$=(-1,0,-1),
∴$\overrightarrow{{D}_{1}E}$•$\overrightarrow{{A}_{1}D}$=-1+0+1=0,
∴直线D1E与A1D所成角的大小是90°.
∵$\overrightarrow{{D}_{1}E}$=(1,t,-1),$\overrightarrow{EC}$=(-1,2-t,0),D1E⊥EC,
∴$\overrightarrow{{D}_{1}E}$•$\overrightarrow{EC}$=-1+t(2-t)+0=0,
解得t=1,∴AE=1.
平面D1DE的法向量为$\overrightarrow{EC}$=(-1,1,0),cos<$\overrightarrow{{A}_{1}D}$,$\overrightarrow{EC}$>=$\frac{-1}{\sqrt{2}•\sqrt{2}}$=-$\frac{1}{2}$,
∴直线A1D与平面D1DE所成的角为30°.
故答案为90°,30°.

点评 本题考查异面直线所成角、线面角的大小的求法,考查线段长的求法,是中档题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.将函数$y=3sin(2x+\frac{π}{3})$的图象向右平移φ($0<φ<\frac{π}{2}$)个单位后,所得函数为偶函数,则φ=$\frac{5π}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知f(x)=log3x,f(a)>f(2),那么a的取值范围是(  )
A.{a|a>2}B.{a|1<a<2}C.$\{a|a>\frac{1}{2}\}$D.$\{a|\frac{1}{2}<a<1\}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在数学课外活动中,小明同学进行了糖块溶于水的实验:将一块质量为7克的糖块放入一定量的水中,测量不同时刻未溶解糖块的质量,得到若干组数据,其中在第5分钟末测得未溶解糖块的质量为3.5克.联想到教科书中研究“物体冷却”的问题,小明发现可以用指数型函数S=ae-kt(a,k是常数)来描述以上糖块的溶解过程,其中S(单位:克)代表t分钟末未溶解糖块的质量.
(1)a=7;
(2)求k的值;
(3)设这个实验中t分钟末已溶解的糖块的质量为M,请画出M随t变化的函数关系的草图,并简要描述实验中糖块的溶解过程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.直线x-y-1=0的倾斜角是(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{2}$D.$\frac{3π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知圆O:x2+y2=16及圆内一点F(-3,0),过F任作一条弦AB.
(1)求△AOB面积的最大值及取得最大值时直线AB的方程;
(2)若点M在x轴上,且使得MF为△AMB的一条内角平方线,求点M的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知集合A={x∈Z|x≥2},B={x|(x-1)(x-3)<0},则A∩B=(  )
A.B.{2}C.{2,3}D.{x|2≤x<3}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.某校共有在职教师200人,其中高级教师20人,中级教师100人,初级教师80人,现采用分层抽样抽取容量为50的样本进行职称改革调研,则抽取的初级教师的人数为(  )
A.25B.20C.12D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,在正方体ABCD-A1B1C1D1中.
( I)求证:AC⊥BD1
(Ⅱ)是否存在直线与直线 AA1,CC1,BD1都相交?若存在,请你在图中画出两条满足条件的直线(不必说明画法及理由);若不存在,请说明理由.

查看答案和解析>>

同步练习册答案