分析 以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,设E(1,t,0),0≤t≤2,分别求出$\overrightarrow{{D}_{1}E}$=(1,t,-1),$\overrightarrow{{A}_{1}D}$=(-1,0,-1),由$\overrightarrow{{D}_{1}E}$•$\overrightarrow{{A}_{1}D}$=0,能求出直线D1E与A1D所成角的大小;$\overrightarrow{{D}_{1}E}$•$\overrightarrow{EC}$=0,能求出AE的长,即可求出直线A1D与平面D1DE所成的角.
解答 解:∵在长方体ABCD-A1B1C1D1中,AD=AA1=1,AB=2,点E在棱AB上移动,
∴以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,
则D(0,0,0),D1(0,0,1),A(1,0,0),A1(1,0,1),C(0,2,0),
设E(1,t,0),0≤t≤2,
则$\overrightarrow{{D}_{1}E}$=(1,t,-1),$\overrightarrow{{A}_{1}D}$=(-1,0,-1),
∴$\overrightarrow{{D}_{1}E}$•$\overrightarrow{{A}_{1}D}$=-1+0+1=0,
∴直线D1E与A1D所成角的大小是90°.
∵$\overrightarrow{{D}_{1}E}$=(1,t,-1),$\overrightarrow{EC}$=(-1,2-t,0),D1E⊥EC,
∴$\overrightarrow{{D}_{1}E}$•$\overrightarrow{EC}$=-1+t(2-t)+0=0,
解得t=1,∴AE=1.
平面D1DE的法向量为$\overrightarrow{EC}$=(-1,1,0),cos<$\overrightarrow{{A}_{1}D}$,$\overrightarrow{EC}$>=$\frac{-1}{\sqrt{2}•\sqrt{2}}$=-$\frac{1}{2}$,
∴直线A1D与平面D1DE所成的角为30°.
故答案为90°,30°.
点评 本题考查异面直线所成角、线面角的大小的求法,考查线段长的求法,是中档题,解题时要认真审题,注意向量法的合理运用.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | {a|a>2} | B. | {a|1<a<2} | C. | $\{a|a>\frac{1}{2}\}$ | D. | $\{a|\frac{1}{2}<a<1\}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{π}{6}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{2}$ | D. | $\frac{3π}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | ∅ | B. | {2} | C. | {2,3} | D. | {x|2≤x<3} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 25 | B. | 20 | C. | 12 | D. | 5 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com